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SUMMARY
We present a new numerical approach to solve the elastic wave equation in heterogeneous me-
dia with arbitrary high order accuracy in space and time on unstructured triangular meshes. We
combine a Discontinuous Galerkin Method with the ideas of the ADER time integration ap-
proach using arbitrary high order derivatives. In contrast to classical finite element methods we
allow for discontinuities of the piecewise polynomial approximation of the solution at element
interfaces. This way, we can use the well-established theory of fluxes across element interfaces
based on the solution of Riemann problems as developed in the finite volume framework. In
particular, we replace time derivatives in the Taylor expansion of the time integration proce-
dure by space derivatives to obtain a numerical scheme of the same high order in time and
space automatically. The method is specially suited for linear hyperbolic systems such as the
heterogeneous elastic wave equations and allows an efficient implementation. The convergence
analysis demonstrates that very high accuracy is retained even on strongly irregular meshes and
by increasing the order of the ADER-Discontinuous Galerkin schemes computational time and
storage space can be reduced drastically. Applications of the proposed method to a problem of
strong material heterogeneities and to the problem of global seismic wave propagation finally
confirm its robustness and high flexibility.

Key words: elastic waves, discontinuous Galerkin method, arbitrary high order, unstructured
mesh

1 INTRODUCTION

The accurate simulation of elastic wave propagation in heterogeneous media with complicated geometry is still a challenging task. Unstruc-
tured meshes that can be adapted to difficult geometrical models often lead to less accurate numerical schemes. However, as the waveforms
contain important information about the interior structure of a material, it is necessary to develop numerical methods that are capable of
computing accurate solutions, e.g. seismograms of high frequencies, even on such strongly irregular meshes that may arise when complex
geometries have to be meshed. Furthermore highly accurate numerical schemes serve to eliminate as far as possible the errors introduced
purely by the numerical approximation of the underlying physical model such that the misfit of simulated and measured data should only
become due to errors in the mathematical description of the physical problem or due to incorrect initialization of the physical parameters of
the investigated model and not due to insufficient accuracy of the numerical method that is used.
In the past two decades a variety of different numerical schemes has been developed in order to solve the elastic wave equations. Finite
difference (FD) schemes for the simulation of SH and P-SV waves on regular, staggered grids were introduced by Virieux (1984; 1986).
Later these schemes were extended to higher orders (Levander 1988), three dimensions (Moczo et al. 2002; Mora 1989) and anisotropic
material (Igel, Mora & Riollet1995; Tessmer 1995). FD like methods on unstructured meshes were developed in (Käser & Igel 2001a; Käser
& Igel 2001b)
Alternatively pseudospectral (PS) methods (Fornberg 1996) have been developed by Carcione (1994) and applied in (Igel 1999; Tessmer &
Kosloff 1994), where the space dependent variables are expanded in a set of orthogonal basis functions which are known exactly at discrete
locations and which also allow the accurate computation of derivatives. Furthermore, no grid-staggering is needed, which provides advan-
tages when modeling anisotropic material. However, quite regular meshes have to be used and due to the global character of the derivative
operators parallelisation is cumbersome.
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Recently the spectral element method (SEM), originally introduced by Patera (1984) in the field of computational fluid mechanics, gained
increasing popularity in numerical seismology. SEM for elastic wave propagation has been applied in two and three space dimensions (Ko-
matitsch & Vilotte 1998; Priolo, Carcione & Seriani 1994; Seriani 1998) and demonstrated advantages in particular for the problem of global
wave propagation (Komatitsch & Tromp 1999; Komatitsch & Tromp 2002). The fundamental idea is to combine the advantages of a spectral
method with those of a finite element (FE) method.
However, it is worth mentioning that all the above mentioned schemes usually use rather low order schemes for the time integration, e.g.
second order Newmark-type schemes (Hughes 1987) or at most fourth order Runge-Kutta schemes (Igel 1999). Furthermore, we note that for
wave propagation problems time accuracy is crucial, in particular when waves are propagating over many wavelengths, as shown in (Dumb-
ser, Schwartzkopff & Munz).

Therefore, in this paper we present a new Discontinuous Galerkin (DG) finite element scheme for two space dimensions that uses the Arbi-
trary high order DERivatives (ADER) approach in order to solve the elastic wave equations with very high accuracy in both space and time.
The proposed numerical method relies on the combination of the Discontinuous Galerkin finite element method and the ADER approach,
originally developed by Toro et al. (2001) and Titarev & Toro (2002) and in (Schwartzkopff, Munz & Toro 2002; Schwartzkopff, Dumbser
& Munz 2004) in the finite volume (FV) framework. The DG schemes belong to a quite recent class of numerical methods first used by
Reed and Hill (1973) to solve linear neutron transport equations. As usual in the FE framework, the unknown solution is approximated inside
each element by a polynomial, whose coefficients - the degrees of freedom - are advanced in time. In contrast to classical continuous FE,
within the DG framework the solution can be discontinuous across the element interfaces, which allows to incorporate the well-established
ideas of numerical flux functions from the finite volume framework. We especially point out that allowing jumps in the numerical solution
may be very useful to capture large jumps in the material properties as will be shown in the first example of section 6. In the last decade
mainly Cockburn and Shu (1989a; 1989b; 1990; 1991; 1998) put the DG scheme into a clear framework together with TVD-Runge-Kutta
time integration methods.
Here, we present a theoretically arbitrary high order DG scheme in combination with the ADER approach in order to reach space and time
accuracy of the same order. Furthermore, the method is formulated as a one step scheme, i.e. we do not need to compute and store inter-
mediate stages as e.g. for Runge-Kutta methods to update the solution to the successive time level. The ADER-DG method proposed in
this paper can handle unstructured triangular meshes and therefore is extremely flexible as far as computational domains with complicated
geometrical structure are concerned. ADER-DG schemes were first developed for linear hyperbolic systems with constant coefficients or for
linear systems with variable coefficients in conservative form (Dumbser 2003; Dumbser & Munz).
In this paper we consider the extension to non-conservative systems with variable coefficients such as the heterogeneous elastic wave equa-
tion. Furthermore, we point out that preliminary results of an extension of the method to three space dimensions as well as a parallel
implementation of the ADER-DG scheme have already been achieved. However, the details of this will be subject to a further publication.

The paper is structured as follows. In Section 2 we introduce the system of the elastic wave equations in the non-conservative velocity-
stress formulation. The proposed DG scheme is presented in Section 3 together with the ADER approach and an efficient formulation
of the required Cauchy-Kovalewski procedure. In Section 4 we address boundary conditions for open and free-surface boundaries. After
investigating numerically the convergence of the ADER-DG scheme in Section 5 on regular and very irregular triangular meshes, we show
two applications of the new scheme in Section 6. One considers a test case for strong heterogeneities in elastic materials as suggested by
LeVeque (2002), the other solves for the problem of global two-dimensional wave propagation using the radially symmetric Preliminary
Reference Earth Model (PREM) of Dziewonski & Anderson (1981).

2 ELASTIC WAVE EQUATIONS

The propagation of waves in an elastic medium is based on the theory of linear elasticity (Aki & Richards 2002; Bedford & Drumheller 1994).
Combining the definition of strain caused by deformations (Hooke’s law) and the equations of the dynamic relationship between acceleration
and stress, the elastic wave equations can be derived as shown in (LeVeque 2002). Considering the two-dimensional elastic wave equation
for an isotropic medium in velocity-stress formulation leads to a linear hyperbolic system of the form

∂
∂t

σxx − (λ + 2µ) ∂
∂x

v − λ ∂
∂y

w = 0 ,

∂
∂t

σyy − λ ∂
∂x

v − (λ + 2µ) ∂
∂y

w = 0 ,

∂
∂t

σxy − µ( ∂
∂x

w + ∂
∂y

v) = 0 ,

ρ ∂
∂t

v − ∂
∂x

σxx − ∂
∂y

σxy = 0 ,

ρ ∂
∂t

w − ∂
∂x

σxy − ∂
∂y

σyy = 0 ,

(1)
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where λ and µ are the Lamé constants and ρ is the mass density of the material. The normal stress components are given by σxx and σyy,
and the shear stress is σxy. The components of the particle velocities in x- and y-direction are denoted by v and w, respectively. This system
was already used in the seminal papers of Virieux (1984; 1986).
We remark that for notational simplicity, we skip the time and space dependencies of the variables. For the rest of this paper, the stresses
and velocities are always assumed to be functions of time and space, i.e. σxx = σxx(�x, t), σyy = σyy(�x, t), σxy = σxy(�x, t), v = v(�x, t),
w = w(�x, t), with t ∈ R and �x = (x, y)T ∈ R

2. The physical properties of the material are functions of space but are constant in time, i.e.
λ = λ(�x), µ = µ(�x), and ρ = ρ(�x), in order to describe heterogeneous material.
For the investigation of the eigenstructure of the system (1), we use the more compact form

∂up

∂t
+ Apq

∂uq

∂x
+ Bpq

∂uq

∂y
= 0, (2)

where u is the vector of the p unknown variables, i.e. u = (σxx, σyy, σxy, v, w)T . Here, we use classical tensor notation which implies
summation over each index appearing twice. The matrices Apq = Apq(�x) and Bpq = Bpq(�x) are the space dependent Jacobian matrices of
size p × q, with p, q = 1, ..., 5, as given by

Apq =




0 0 0 −(λ + 2µ) 0

0 0 0 −λ 0

0 0 0 0 −µ

− 1
ρ

0 0 0 0

0 0 − 1
ρ

0 0


 , (3)

Bpq =




0 0 0 0 −λ

0 0 0 0 −(λ + 2µ)

0 0 0 −µ 0

0 0 − 1
ρ

0 0

0 − 1
ρ

0 0 0


 . (4)

In the framework of unstructured triangular meshes, where cell edges in general are not aligned with the coordinate axis, the Jacobian matrix
(An)pq in normal direction �n = (nx, ny)T to a cell interface is obtained by the linear combination of the Jacobian matrices in (3) and (4)

(An)pq = nxApq + nyBpq

=




0 0 0 −nx(λ + 2µ) −nyλ

0 0 0 −nxλ −ny(λ + 2µ)

0 0 0 −nyµ −nxµ

−nx
ρ

0 −ny

ρ
0 0

0 −ny

ρ
−nx

ρ
0 0


 .

(5)

The propagation velocity of the elastic waves are determined by the eigenvalues of the Jacobian matrices Apq and Bpq and result in

s1 = −cp, s2 = −cs, s3 = 0, s4 = cs, s5 = cp, (6)

where

cp =

√
λ + 2µ

ρ
, and cs =

√
µ

ρ
. (7)

We remark that for the isotropic case the wave speeds in (6) and (7) do not depend on the propagation direction. The two P-waves propagate
with speeds s1 and s5 and the two S-waves propagate with speeds s2 and s4 in the negative and positive direction with respect to �n.
RAn

p1 , ..., RAn
p5 denote the right eigenvectors of the normal Jacobian matrix in (5) in direction �n and are given by the columns of the matrix

of right eigenvectors

RAn
pq =




λ + 2µn2
x −2µnxny n2

y −2µnxny λ + 2µn2
x

λ + 2µn2
y 2µnxny n2

x 2µnxny λ + 2µn2
y

2µnxny µ(n2
x − n2

y) −nxny µ(n2
x − n2

y) 2µnxny

nxcp −nycs 0 nycs −nxcp

nycp nxcs 0 −nxcs −nycp


 . (8)

The derived eigenstructure of the elastic wave equations provides the necessary information to construct the ADER-DG scheme as described
in the following Section 3.
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3 THE NUMERICAL SCHEME

For the construction of the numerical scheme, we consider the general linear hyperbolic system of equations with variable coefficients as
given in (2). The computational domain Ω ∈ R

2 is divided in conforming triangular elements T (m) being addressed by a unique index (m).
Furthermore, we suppose the matrices Apq and Bpq to be piecewise constant inside an element T (m).

3.1 Semi-Discrete Form of the Scheme

The numerical solution uh of equation (2) is approximated inside each triangle T (m) by a linear combination of time independent polynomial
basis functions Φl(ξ, η) of degree N with support T (m) and with time dependent degrees of freedom û

(m)
pl (t):(

u
(m)
h

)
p
(ξ, η, t) = û

(m)
pl (t)Φl(ξ, η). (9)

ξ and η are the coordinates in a reference element TE and are defined in (17) and (18). The approximation space is denoted by Vh. We
use orthogonal basis functions Φk that rely on the ideas originally developed by Dubiner (1991) and which are given e.g. in the book of
Cockburn, Karniadakis & Shu (2000). Multiplying (2) by a test function Φk ∈ Vh and integrating over a triangle T (m) gives∫

T (m)
Φk

∂up

∂t
dV +

∫
T (m)

Φk

(
Apq

∂uq

∂x
+ Bpq

∂uq

∂y

)
dV = 0. (10)

Integration of (10) by parts then yields∫
T (m)

Φk
∂up

∂t
dV +

∫
∂T (m)

ΦkF h
p dS −

∫
T (m)

(
∂Φk

∂x
Apquq +

∂Φk

∂y
Bpquq

)
dV = 0 (11)

where a numerical flux Fh
p has been introduced in the surface integral since uh may be discontinuous at an element boundary. As we suppose

rotational invariance of the system in (2) for the isotropic case, the flux can be derived for a coordinate system, which is aligned with the
outward pointing unit normal vector �n of an element boundary. The required transformation (rotation) of the unknowns in vector up from the
global Cartesian system to the vector un

q in a local normal, i.e. edge-aligned, coordinate system is given by

up = Tpqu
n
q (12)

For the two-dimensional elastic wave equations the transformation matrix Tpq in (12) reads as

Tpq =




n2
x n2

y −2nxny 0 0

n2
y n2

x 2nxny 0 0

nxny −nxny n2
x − n2

y 0 0

0 0 0 nx −ny

0 0 0 ny nx


 . (13)

For the system in (2) we use the exact Riemann solver to compute the state at the cell interfaces by upwinding. The flux is then computed with
the Jacobian matrix in 3, i.e. with the material properties given in the considered element. In the global Cartesian xy-system the numerical
flux F h

p in (11) for triangle T (m) across the edge with one of the neighbour triangles T (mj), j = 1, 2, 3, is then given as

F h
p = 1

2
Tpq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (Trs)
−1û

(m)
sl Φ

(m)
l +

1
2
Tpq

(
A

(m)
qr −

∣∣∣A(m)
qr

∣∣∣) (Trs)
−1û

(mj)

sl Φ
(mj)

l ,

(14)

where û
(m)
sl Φ

(m)
l and û

(mj )

sl Φ
(mj )

l are the boundary extrapolated values of the numerical solution from element T (m) and the j-th side
neighbour T (mj ), respectively. The matrix (Trs)

−1 represents the back-transformation into the global xy-system. We point out that the
boundary values of both elements adjacent to an interface contribute to the numerical flux. Furthermore, due to the rotation it is sufficient
to evaluate the Jacobian matrix A

(m)
qr in (3) in x-direction with the material properties given in triangle T (m). This way, the numerical flux

respects the non-conservative form of the governing equation in (2). The notation
∣∣∣A(m)

qr

∣∣∣ of the absolute value of the Jacobian matrix has the
meaning of applying the absolute value operator to the eigenvalues given in (6), i.e.∣∣∣A(m)

qr

∣∣∣ = RA
pr |Λrs|

(
RA

sq

)−1

, with |Λrs| = diag (|s1| , |s2| , ...) . (15)

Now, inserting (9) and (14) into (11) and splitting the boundary integral into the contributions of each edge j of the triangle T (m), we obtain

∂
∂t

û
(m)
pl

∫
T (m) ΦkΦldV +

+
3∑

j=1

T j
pq

1
2

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1û
(m)
sl

∫
(∂T (m))

j

Φ
(m)
k Φ

(m)
l dS +

+
3∑

j=1

T j
pq

1
2

(
A

(m)
qr −

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1û
(mj)

sl

∫
(∂T (m))

j

Φ
(m)
k Φ

(mj )

l dS −

− Apqû
(m)
ql

∫
T (m)

∂Φk
∂x

ΦldV − Bpqû
(m)
ql

∫
T (m)

∂Φk
∂y

ΦldV = 0.

(16)
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η
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TE

1

1

2

2
33

Figure 1. Transformation from the physical triangle T (m) to the canonical reference triangle TE with nodes (0, 0), (1, 0) and (0, 1).

Equation (16) is written in the global xy-system. If we transform each physical triangle T (m) to a canonical reference triangle TE in a
ξη-reference system as shown in Fig. 1, the method can be implemented much more efficiently since many integrals can be precomputed
beforehand in this reference system. The coordinate transformation is defined by

x = x1 + (x2 − x1) ξ + (x3 − x1) η,

y = y1 + (y2 − y1) ξ + (y3 − y1) η,
(17)

with the inverse transformation

ξ = 1
|J|

(
(x3y1 − x1y3) + x(y3 − y1) + y(x1 − x3)

)
,

η = 1
|J|

(
(x1y2 − x2y1) + x(y1 − y2) + y(x2 − x1)

)
,

(18)

where |J | = (x2 − x1) (y3 − y1) − (x3 − x1) (y2 − y1) is the determinant of the Jacobian matrix of the transformation being equal to the
double of the triangle’s surface.
With respect to the transformation, we have furthermore

dx dy = |J | dξ dη, (19)

and the transformed gradients 
 ∂

∂x

∂
∂y


 =


 ∂ξ

∂x
∂η
∂x

∂ξ
∂y

∂η
∂y




 ∂

∂ξ

∂
∂η


 . (20)

Integrating in the reference system using (19) and (20), the semi-discrete DG formulation of (16) reads as

∂
∂t

û
(m)
pl |J |

∫
TE

ΦkΦldξdη +

+
3∑

j=1

T j
pq

1
2

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1û
(m)
sl |Sj |

1∫
0

Φ
(m)
k (χj)Φ

(m)
l (χj)dχj +

+
3∑

j=1

T j
pq

1
2

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1û
(mj)

sl |Sj |
1∫
0

Φ
(m)
k (χj)Φ

(mj )

l (χj)dχj −

−A∗
pqûql |J |

∫
TE

∂Φk
∂ξ

Φldξdη − B∗
pqûql |J |

∫
TE

∂Φk
∂η

Φldξdη = 0

(21)

with the special linear combination of the Jacobians

A∗
pq = Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y
, (22)

B∗
pq = Apq

∂η

∂x
+ Bpq

∂η

∂y
. (23)

In (21) the variable 0 ≤ χj ≤ 1 is introduced to parameterize the j-th edge of the reference triangle and |Sj | is the length of this edge in
physical space. The following integrals

Mkl =

∫
TE

ΦkΦldξdη, (24)

F j,0
kl =

∫ 1

0

Φ
(m)
k (χj)Φ

(m)
l (χj)dχj , (25)

F j,i
kl =

∫ 1

0

Φ
(m)
k (χj)Φ

(mj )

l (χj)dχj , (26)
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Kξ
kl =

∫
TE

∂Φk

∂ξ
Φldξdη, (27)

Kη
kl =

∫
TE

∂Φk

∂η
Φldξdη. (28)

can all be calculated beforehand by a computer algebra system (e.g. Maple). On an unstructured mesh the flux matrices Fj,0
kl account for

the contribution of the element T (m) itself to the fluxes over all three edges j and the flux matrices Fj,i
kl account for the contribution of the

elements’ direct side neighbours T (mj) to the fluxes over the edges j. Index 1 ≤ i ≤ 3 indicates the local number of the common edge in
neighbour T (mj ) and depends on the mesh generator. Matrices Kξ

kl and Kη
kl are analogous to the stiffness matrices of classical continuous

FE. We emphasize that for the DG method as given by (21) no assembly of global mass-, flux- and stiffness matrices is needed in contrast to
continuous FE schemes. The method is completely local and therefore well suited for parallelization. Hence, there are no large global linear
equation systems to solve and due to the choice of orthogonal basis functions the inversion of the diagonal DG mass matrix Mkl is trivial.
Examples for matrices (24) to (28) can be found in (Dumbser & Munz). On a given mesh, where index i is known, only three of the nine
possible matrices F j,i

kl are used per element.
If the semi-discrete equation (21) is integrated in time with a Runge-Kutta method, we obtain the quadrature-free Runge-Kutta Discontinuous
Galerkin approach developed by Atkins & Shu (1998).

3.2 The ADER Time Discretization

Since the efficiency of Runge-Kutta (RK) time discretization schemes drastically decreases if the order of accuracy becomes greater than
four, due to the so-called Butcher barriers (Butcher 1987) which cause the number of intermediate RK stages to become larger than the
formal order of accuracy, we apply the ADER approach of Toro et al. (2001) to the semi-discrete form of the DG scheme (21) in order to
achieve an arbitrarily accurate time discretization.
The main ingredients of the ADER approach (Toro & Titarev 2002) are a Taylor expansion in time, the solution of Derivative Riemann
Problems (DRP) to approximate the space derivatives at the interface and the Cauchy-Kovalewski procedure for replacing the time derivatives
in the Taylor series by space derivatives. In this section we show how the ADER approach can be used for high order time integration of the
Discontinuous Galerkin method for linear hyperbolic systems and term the proposed scheme ADER-DG.
For the development of linear ADER-DG schemes, we first need a general formula for the Cauchy-Kovalewski procedure in order to replace
the k-th time derivative by pure space derivatives. Since all our basis functions are given in the ξη-system, we need a Cauchy-Kovalewski
procedure which makes use of the spatial derivatives with respect to ξ and η. Therefore, we rewrite our original PDE (2) with the use of (20)
as

∂up

∂t
+ Apq

(
∂uq

∂ξ

∂ξ

∂x
+

∂uq

∂η

∂η

∂x

)
+ Bpq

(
∂uq

∂ξ

∂ξ

∂y
+

∂uq

∂η

∂η

∂y

)
= 0, (29)

rearrange this equation to get

∂up

∂t
+

(
Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y

)
∂uq

∂ξ
+

(
Apq

∂η

∂x
+ Bpq

∂η

∂y

)
∂uq

∂η
= 0, (30)

and finally, by using the definitions in (22) and (23), we obtain

∂up

∂t
+ A∗

pq
∂uq

∂ξ
+ B∗

pq
∂uq

∂η
= 0 . (31)

The k-th time derivative as a function of pure space derivatives in the ξη-reference system is the result of the Cauchy-Kovalewski procedure
applied to (31) and is given by

∂kup

∂tk
= (−1)k

(
A∗

pq
∂

∂ξ
+ B∗

pq
∂

∂η

)k

uq . (32)

We point out that it is a key issue to use the Cauchy-Kovalewski procedure in the form (32) since it allows us to pre-calculate many matrices
beforehand, as we will see in the following.
We develop the solution of (2) in a Taylor series in time up to order N ,

up(ξ, η, t) =
N∑

k=0

tk

k!

∂k

∂tk
up(ξ, η, 0), (33)

and replace time derivatives by space derivatives, using (32):

up(ξ, η, t) =
N∑

k=0

tk

k!
(−1)k

(
A∗

pq
∂

∂ξ
+ B∗

pq
∂

∂η

)k

uq(ξ, η, 0). (34)

We now introduce the Discontinuous Galerkin approximation (9) and obtain

up(ξ, η, t) =

N∑
k=0

tk

k!
(−1)k

(
A∗

pq
∂

∂ξ
+ B∗

pq
∂

∂η

)k

Φl(ξ, η)ûql(0). (35)
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This approximation can now be projected onto each basis function in order to get an approximation of the evolution of the degrees of freedom
during one time step from time level n to time level n + 1. We obtain

ûpl(t) =

〈
Φn,

N∑
k=0

tk

k!
(−1)k

(
A∗

pq
∂
∂ξ

+ B∗
pq

∂
∂η

)k

Φm(ξ)

〉
〈Φn, Φl〉

ûqm(0) (36)

where 〈., .〉 denotes the inner product over the reference triangle TE and the division by 〈Φn, Φl〉 denotes the multiplication with the inverse
of the mass matrix. This reduces indeed to division by its diagonal entries since the mass matrix is diagonal due to the supposed orthogonality
of the basis functions. Equation (36) can be integrated analytically in time and we obtain

∫ ∆t

0

ûpl(t)dt =

〈
Φn,

N∑
k=0

∆t(k+1)

(k+1)!
(−1)k

(
A∗

pq
∂
∂ξ

+ B∗
pq

∂
∂η

)k

Φm(ξ)

〉
〈Φn, Φl〉

ûqm(0). (37)

With the definition

Iplqm(∆t) =

〈
Φn,

N∑
k=0

∆t(k+1)

(k+1)!
(−1)k

(
A∗

pq
∂
∂ξ

+ B∗
pq

∂
∂η

)k

Φm(ξ)

〉
〈Φn, Φl〉

(38)

equation (37) becomes simply ∫ ∆t

0

ûpl(t)dt = Iplqm(∆t)ûqm(0) (39)

and we finally obtain the fully discrete ADER-DG scheme by integration of (21) in time:[(
û

(m)
pl

)n+1

−
(
û

(m)
pl

)n
]
|J |Mkl +

+ 1
2

3∑
j=1

T j
pq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1 |Sj |F j,0
kl · Iqlmn(∆t)

(
û

(m)
mn

)n

+

+ 1
2

3∑
j=1

T j
pq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)

−1 |Sj |F j,i
kl · Iqlmn(∆t)

(
û

(mj)
mn

)n

−

− A∗
pq |J |Kξ

kl · Iqlmn(∆t)
(
û

(m)
mn

)n

− B∗
pq |J |Kη

kl · Iqlmn(∆t)
(
û

(m)
mn

)n

= 0 .

(40)

On rectangular elements, the scheme takes the same form except that one has to consider the contribution of four edges instead of three in
the case of triangles. The equations (17) and (18) of the transformation remain unchanged, see (Schwarz 1988). The scheme is quadrature-
free and performs high order time-integration from tn to tn+1 in one single step. It thus needs the same memory as a first order explicit
Euler time-stepping scheme. Note that for any DG scheme the initial condition at t0 must be projected onto the degrees of freedom via L2

projection.

3.3 An Efficient Algorithm for the Cauchy-Kovalewski Procedure of Linear Systems

On unstructured meshes, we must evaluate equation (38) in each triangle in each time step, if we do not want to store all the tensor co-
efficients Iplqm(∆t) for each triangle. Therefore, in the following we show a very efficient algorithm for its evaluation on the reference
cell. Equation (38) contains a binomial formula for matrices whose products unfortunately do not commute in the general case. If expanded
explicitly, (38) becomes

Iplqm(∆t) = 〈Φn, Φl〉−1 ·
〈
Φn,

∑N
k=0

∆t(k+1)

(k+1)!
(−1)k ×

k∑
nB=0

Spq

(
A∗

pq, B
∗
pq, k − nB , nB

)
∂k

∂ξ(k−nB )∂ηnB
Φm

〉
.

(41)

Hence, in the evaluation of (38) we have to compute the sums Spq of all products of A∗
pq and B∗

pq in which matrix A∗
pq appears nA = k−nB

times and matrix B∗
pq appears nB times, taking into account all possible matrix permutations. Without proof, we give a recursive algorithm

defining the Spq in step 1 of Algorithm 1. It recycles all previously computed data if implemented in an unrolled manner, storing intermediate
results. In Algorithm 1, δpq denotes the usual Kronecker symbol.
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Algorithm 1: (efficient Cauchy-Kovalewski procedure)

Step 1: Compute and store temporarily the sums of all matrix products of A∗
pq and B∗

pq with all possible permutations,

Spq(A
∗
pq, B

∗
pq , nA, nB) := 0, if nA < 0 ∨ nB < 0,

Spq(A
∗
pq, B

∗
pq, 0, 0) := δpq ,

Spq(A
∗
pq, B

∗
pq , nA, nB) = Spr(A

∗
pr, B

∗
pr, nA − 1, nB) · A∗

rq +

Spr(A
∗
pr, B

∗
pr, nA, nB − 1) · B∗

rq,

∀ 0 ≤ nA + nB ≤ N.

Step 2: Exchange summation and integration in eqn. (41) and compute Iplqm(∆t) as:

Iplqm(∆t) =
N∑

k=0

∆t(k+1)

(k + 1)!
(−1)k

k∑
nB=0

Spq

(
A∗

pq, B
∗
pq , k − nB , nB

)
×

〈Φn, Φl〉−1

〈
Φn,

∂k

∂ξ(k−nB)∂ηnB
Φm

〉
.

This algorithm is used in each triangle T (m) in each time-step. However, all projections of the space derivatives of the basis functions onto
all the test functions, as they appear in step 2 in Algorithm 1, can be precomputed once and then stored. They are defined on the canonical
reference triangle and depend neither on the mesh nor on the time step.

4 BOUNDARY CONDITIONS

There is a variety of physically meaningful boundary conditions of an elastic medium. However, the two important types of boundaries are
open and free surface boundaries.

4.1 Open Boundaries

At open boundaries, no waves are supposed to enter the computational domain and those waves that are travelling out should be able to pass
the boundary without reflections. There is a whole scientific community dealing with non-reflective boundary conditions, however, in this
section we present only a very simple approach that so far yielded satisfactory results, at least for our purposes. The numerical flux (14) is
based on the solution of the Riemann-Problem given by the jump across the element interface. It is a strict upwind method, i.e. outgoing
waves at an element interface are only influenced by the state in the element itself and not by the state in the neighbour. In contrast, the flux
contribution of incoming waves is purely due to the state in the neighbour element. Thus, a very simple implementation of open boundary
conditions is to use the following numerical flux in (40) at all those edges that coincide with an open boundary:

F OpenBC
p =

1

2
Tpq

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣) (Trs)
−1û

(m)
sl Φ

(m)
l . (42)

The flux function (42) allows only for outgoing waves, which are merely defined by the state in the element due to upwinding. Since incoming
waves are not allowed, the respective flux contribution must vanish.

4.2 Free Surface Boundaries

On the free surface of an elastic medium, the normal stress and the shear stresses with respect to the boundary are determined by physical
constraints. At the outside of the elastic medium, there are no external forces that retract the particles into their original position. Therefore,
the normal stress and the shear stress values at the free surface have to be zero. In contrast to classical continuous FE methods we have no
direct control on the values at the boundaries within the Discontinuous Galerkin framework. However, the boundary values can be imposed
via the numerical flux, as in the finite volume framework. Considering that the numerical flux is based on the solution of a Riemann-Problem
at an element interface and given some boundary extrapolated values from inside the computational domain on a free surface, we must search
corresponding virtual neighbour values outside the computational domain such that the solution of the Riemann-Problem yields exactly the
free-surface boundary conditions at the domain boundary. However, the solution of this so-called inverse Riemann problem at a free surface
boundary is quite simple and can be obtained via symmetry considerations. For those components of the state vector up, that we want to
be zero at the domain boundary, we prescribe a virtual component outside the domain that has the same magnitude but opposite sign. For
the other components we just copy the inside values to the virtual outside neighbour. For the free-surface boundary condition the resulting
numerical flux function in (40) can then be formulated as follows,

F FreeBC
p = 1

2
Tpq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (Trs)
−1û

(m)
sl Φ

(m)
l +

+ 1
2
Tpq

(
A

(m)
qr −

∣∣∣A(m)
qr

∣∣∣) Γrs (Tst)
−1û

(m)
tl Φ

(m)
l ,

(43)

where the matrix Γrs = diag (−1, 1,−1, 1, 1) accounts for the mirroring of normal and shear stresses.
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5 CONVERGENCE STUDY

In this section we numerically determine the convergence orders of the proposed ADER-DG schemes. As test case we solve the two-
dimensional elastic wave equations in (1) on a square shaped domain Ω = [−50, 50] × [−50, 50] ∈ R

2. We consider the initial condition

Q0
p = Qp(�x, 0) = RAn

p2 sin(�k · �x) + RAn
p5 sin(�k · �x) , (44)

with the wave number

�k = (kx, ky)T =
2π

25
(1, 1)T . (45)

The vectors RAn
p2 and RAn

p5 are two of the eigenvectors in (8). Therefore, the initial condition in (44) creates a plane sinusoidal P-wave
traveling along the diagonal direction �n = (1, 1)T , as well as a plane sinusoidal S-wave traveling into the opposite direction.
The homogeneous material parameters are set to

λ = 2, µ = 1, ρ = 1, (46)

throughout the computational domain Ω leading to the constant wave propagation velocities

cp = 2, cs = 1 , (47)

for the P- and S-wave, respectively. The total simulation time T is set to T = 100
√

2, such that the P- and S-waves at simulation time t = T

coincide with the initial condition at time t = 0. Therefore, the exact reference solution is given by the initial condition in (44), i.e.

Qp(�x, T ) = Qp(�x, 0). (48)

The CFL number is set in all computations to 50% of the stability limit 1
2N+1

of Runge-Kutta DG schemes. For a thorough investigation of
the linear stability properties of the ADER-DG schemes via a von Neumann analysis see (Dumbser 2005).
The numerical experiments to determine the convergence orders are performed on two sequences of regular and irregular triangular meshes.
Each sequence consists of four meshes with decreasing mesh width. The first two meshes of each sequence are shown in Fig. 2.
For the regular mesh the refinement is simply controlled by changing the number of grid cells in each dimension. For the irregular meshes
we use the so-called red-refinement as described in detail in (Hempel 1995; Meister & Struckmeier 2002). As shown in Fig. 2 c) and d) each
triangle is refined subsequently by dividing it into four similar sub triangles. We characterize the refinement state of a mesh by the maximum
diameter h of the circumscribed circles of all triangular cells.
In Tables 1 and 2 the errors in L∞ and L2 norm are given in relation to h for the regular and irregular meshes. The corresponding numerical
convergence orders OL∞ and OL2 are determined by two successively refined meshes. Furthermore, we present the total number Nd of
degrees of freedom, which is a measure of required storage space during runtime. The computations were carried out on a Pentium Xeon 3.6

GHz processor with 4GB of RAM and the obtained CPU-times in seconds are also listed in Tables 1 and 2.

Based on these convergence results, we state that the proposed ADER-DG schemes achieve the expected convergence orders on both regular
and irregular meshes. We note that the ADER-DG O10 schemes for the finest meshes in both cases, regular and irregular, seem to reach
machine precision. Therefore, the convergence orders slightly drop below the expected values. Also we mention that the CPU-time to reach
the final simulation time t = T is much larger for the irregular meshes. This is due to the small time steps caused by the CFL condition of
the smallest diameter of the inscribed circle of all triangles (see Fig. 2 c) and d).
A visual comparison of the obtained results is given in Fig. 3 and 4. We plot the errors in L∞ norm against mesh spacing h, total number
of degrees of freedom Nd, and CPU-time. The slopes of the top plots in Fig. 3 and 4 give the convergence orders and show that with mesh
refinement the errors decrease much faster if the order of the scheme is increased.
Similarly, for a desired maximum error the total number of degrees of freedom, which is directly proportional to the required storage space,
decreases for higher order schemes. Or, in other words, for a given storage space higher accuracy can be reached with higher order schemes.
In the last plot, we demonstrate that the CPU-time needed to reach a desired accuracy also decreases when using higher order schemes, in
particular on the regular meshes. For the irregular meshes, the results are less clear for rather low accuracy requirements, e.g. L∞ > 10−3.
However, if higher accuracy, e.g. L∞ < 10−3, is desired, the higher order schemes require significantly less CPU-time. Therefore, the results
of the convergence analysis clearly demonstrate the advantages of high order ADER-DG schemes, when applied to the elastic wave equations.
We also note that these results extend to other linear hyperbolic systems, such as the linearized Euler equations, as shown in (Dumbser 2005).

6 NUMERICAL EXAMPLES

Here we present two numerical examples in order to demonstrate the performance and flexibility of the proposed ADER-DG scheme.
In the first example we reproduce the results published in the book of LeVeque (2002) in order to show how large contrasts in material
parameters of a heterogeneous medium can be easily handled. Furthermore, we clearly demonstrate that higher order schemes pay off, when
high resolution results are required.
In the second example we apply our scheme to the case of global seismic wave propagation, where the advantages of flexible, triangular
meshes are presented. Using an unstructured mesh we can easily overcome the problem of decreasing cell spacing towards the earth’s center
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Figure 2. Meshes for the analysis of the numerical convergence orders: a) regular mesh, b) refined regular mesh c) irregular mesh, d) refined irregular mesh.

that usually arises when working with regular, structured grids e.g. for FD methods. In addition, we adjust the mesh spacing in a way to
optimally make use of the CFL criterion, i.e. larger cells are used in zones of higher velocity, where the expected wavelengths are larger and
thus cell sizes can be increased.

6.1 Example 1

The following numerical example is based on a test case given by LeVeque (2002) in Chapter 22.7. An initially plane P-wave travels
through a heterogeneous elastic medium. The medium consists of two different materials where in an outer solid material of extent Ωo =

[−1, 1] × [−0.5.0.5] is embedded another, stiffer, elastic material of size Ωi = [−0.5, 0.5] × [−0.1.0.1]. The elastic properties of the outer
material are ρo = 1, λo = 2, and µo = 1, whereas the inner material has the properties ρi = 1, λi = 200, and µi = 100. Therefore, we
have to deal with a large jump of the physical parameters at the interface between the two materials. The wave speeds of both P- and S-waves
inside the stiffer material are ten times larger than in the outer medium.
At the left and right boundaries (x = ±1) of Ωo we implemented open boundaries, whereas at the top and bottom boundaries (y = ±0.5)

we use a free surface boundary condition, where the normal stress σyy and the shear stress σxy must vanish.
The initial condition is given by

Q0
p = Qp(�x, 0) = RAn

p5 exp

(
−1

2

(x − x0)
2

σ2

)
, (49)

with �n = (1, 0)T , x0 = −0.8 and standard deviation σ = 0.01, which represents a plane P-wave of Gaussian shape travelling in x-direction.
Initially, the center of the plane wave is located at x = −0.8. Due to the free surface boundary condition at y = ±0.5, surface waves develop
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Figure 3. L∞ error versus mesh width 1/h, total number of degrees of freedom Nd and CPU time of ADER-DG schemes from O2 − O10 on the regular
meshes.
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meshes.
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Table 1. Convergence rates from order 2 to 10 of ADER-DG on regular meshes.

h L∞ OL∞ L2 OL2 Nd CPU [s]

2.108 1.542 · 100 − 1.044 · 102 − 7500 123
1.054 4.087 · 10−1 1.916 2.760 · 101 1.919 30000 892
0.703 1.769 · 10−1 2.065 1.202 · 101 2.051 67500 2934
0.527 9.733 · 10−2 2.077 6.657 · 100 2.053 120000 6925

2.108 9.890 · 10−2 − 5.926 · 100 − 15000 307
1.054 1.045 · 10−2 3.242 6.526 · 10−1 3.183 60000 2263
0.703 2.930 · 10−3 3.137 1.888 · 10−1 3.059 135000 7358
0.527 1.199 · 10−3 3.105 7.859 · 10−2 3.046 240000 17269

3.514 3.292 · 10−2 − 1.917 · 100 − 9000 147
2.108 4.215 · 10−3 4.024 2.555 · 10−1 3.945 25000 644
1.054 2.734 · 10−4 3.947 1.633 · 10−2 3.967 100000 4947
0.703 5.444 · 10−5 3.980 3.243 · 10−3 3.988 225000 16492

3.514 2.887 · 10−3 − 1.254 · 10−1 − 13500 328
2.108 2.224 · 10−4 5.018 9.919 · 10−3 4.967 37500 1408
1.054 6.353 · 10−6 5.129 3.068 · 10−4 5.015 150000 10971
0.703 8.491 · 10−7 4.964 4.019 · 10−5 5.013 337500 36923

5.270 2.003 · 10−3 − 7.847 · 10−2 − 8400 221
2.635 3.665 · 10−5 5.772 1.411 · 10−3 5.797 33600 1650
1.757 3.299 · 10−6 5.938 1.285 · 10−4 5.909 75600 5437
1.318 5.851 · 10−7 6.012 2.315 · 10−5 5.959 134400 12730

5.270 2.004 · 10−4 − 7.096 · 10−3 − 11200 425
2.635 1.726 · 10−6 6.859 5.449 · 10−5 7.025 44800 3323
1.757 1.038 · 10−7 6.934 3.173 · 10−6 7.013 100800 10886
1.318 1.412 · 10−8 6.934 4.216 · 10−7 7.016 179200 25834

5.270 1.896 · 10−5 − 4.665 · 10−4 − 14400 843
3.514 8.074 · 10−7 7.784 1.955 · 10−5 7.824 32400 2784
2.635 7.903 · 10−8 8.078 2.010 · 10−6 7.908 57600 6653
2.108 1.365 · 10−8 7.870 3.449 · 10−7 7.899 90000 12874

5.270 1.505 · 10−6 − 3.256 · 10−5 − 18000 1597
3.514 4.003 · 10−8 8.945 8.438 · 10−7 9.009 40500 5278
2.635 3.036 · 10−9 8.965 6.434 · 10−8 8.946 72000 12353
2.108 4.342 · 10−10 8.716 7.396 · 10−9 9.694 112500 24814

10.541 8.902 · 10−5 − 1.660 · 10−3 − 5500 381
5.270 1.099 · 10−7 9.662 1.764 · 10−6 9.879 22000 2878
3.514 2.000 · 10−9 9.882 3.188 · 10−8 9.898 49500 9946
2.635 1.980 · 10−10 8.038 5.285 · 10−9 6.246 88000 23100

right from the beginning of the simulation. When the planar wave hits the stiffer material of the inclusion at x = −0.5 at time t = 0.15, the
elastic waves travel with 10 times higher velocities through the inclusion where they are reflected each time they hit either of the boundaries
at x = ±0.5. Therefore the inclusion starts to vibrate, radiating waves of small amplitude into the outer material. Similar to LeVeque (2002)
we use a nonlinear color scale in order to visualize also these waves with small amplitude.
In Fig. 5 we show two snapshots of the component σxx of the resulting wave field at simulation time t = 0.3. In the top figure, we used an
ADER-DG O4 scheme that uses 10 degrees of freedom per element. The corresponding mesh is constructed by using 200 × 100 squares
in x- and y-direction, respectively, where each square is split into 4 similar triangles as shown in Fig. 2 a). Therefore the total number of
triangles in the mesh is 80000.
In the bottom snapshot of Fig. 5, we used an ADER-DG O6 scheme. The mesh spacing is now increased such that we only use 100 × 50

squares in x- and y-direction, respectively. Therefore the total number of triangles is only 20000 but due to the higher order of the scheme
we now have 21 degrees of freedom per triangle, which finally roughly leads to half of the total number of degrees of freedom for the sixth
order scheme. Comparing the measured CPU times of the fourth and the sixth order method we indeed get a two times lower CPU time for
the computation with the ADER-DG O6 scheme compared to the ADER-DG O4 method. Visually comparing the snapshots in Fig. 5, one
can hardly see any difference between the two results. In both cases all features of the solution are resolved equally well. Comparing our
results qualitatively we get an excellent agreement with the solution of LeVeque (2002), who used a slightly different initial condition and a
second order FV scheme on a 600 × 300 Cartesian grid. We note that for visualization of the results, the numerical solution is shown on a
much finer grid than the one used for the computations. The visualization grid consists of about two million triangles at whose vertices the
numerical solution of the ADER-DG schemes is evaluated according to (9).
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Figure 5. Stress component σxx at t = 0.3 for the inclusion test case.
ADER-DG O4 scheme with 4 · 200 × 100 triangles (top),
ADER-DG O6 scheme with 4 · 100 × 50 triangles (bottom).
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Table 2. Convergence rates from order 2 to 10 of ADER-DG on the irregular meshes.

h L∞ OL∞ L2 OL2 Nd CPU [s]

6.513 2.224 · 100 − 1.459 · 102 − 2976 55
3.257 1.201 · 100 0.889 6.952 · 101 1.070 11904 438
1.628 2.844 · 10−1 2.078 1.371 · 101 2.342 47616 3509
0.814 5.748 · 10−2 2.307 2.704 · 100 2.342 190464 28232

6.513 7.072 · 10−1 − 3.423 · 101 − 5952 139
3.257 1.119 · 10−1 2.660 2.517 · 100 3.765 23808 1120
1.628 1.758 · 10−2 2.670 2.373 · 10−1 3.407 95232 8987
0.814 2.894 · 10−3 2.603 2.814 · 10−2 3.076 380928 72140

6.513 1.447 · 10−1 − 1.768 · 100 − 9920 315
3.257 1.111 · 10−2 3.703 9.910 · 10−2 4.157 39680 2526
1.628 1.054 · 10−3 3.397 6.604 · 10−3 3.907 158720 20246
0.814 8.002 · 10−5 3.720 4.266 · 10−4 3.952 634880 164634

13.026 5.288 · 10−1 − 5.660 · 100 − 3720 95
6.513 3.166 · 10−2 4.062 1.384 · 10−1 5.353 14880 771
3.257 1.066 · 10−3 4.893 4.639 · 10−3 4.899 59520 6123
1.628 5.261 · 10−5 4.340 1.677 · 10−4 4.789 238080 49648

13.026 1.421 · 10−1 − 7.123 · 10−1 − 5208 219
6.513 3.845 · 10−3 5.208 1.279 · 10−2 5.800 20832 1780
3.257 6.839 · 10−5 5.813 2.255 · 10−4 5.825 83328 14044
1.628 1.220 · 10−6 5.809 3.892 · 10−6 5.857 333312 107658

13.026 3.750 · 10−2 − 1.569 · 10−1 − 6944 419
6.513 5.503 · 10−4 6.091 1.197 · 10−3 7.034 27776 3352
3.257 4.352 · 10−6 6.982 1.009 · 10−5 6.891 111104 27034
1.628 4.496 · 10−8 6.597 9.137 · 10−8 6.787 444416 216821

26.052 2.168 · 10−1 − 4.104 · 100 − 2232 111
13.026 8.565 · 10−3 4.662 1.867 · 10−2 7.780 8928 895
6.513 4.746 · 10−5 7.496 9.682 · 10−5 7.591 35712 7157
3.257 2.154 · 10−7 7.783 4.058 · 10−7 7.898 142848 57415

26.052 2.481 · 10−1 − 1.509 · 100 − 2790 220
13.026 1.540 · 10−3 7.332 3.697 · 10−3 8.673 11160 1731
6.513 5.397 · 10−6 8.156 7.347 · 10−6 8.975 44640 13779
3.257 1.040 · 10−8 9.019 1.981 · 10−8 8.535 178560 108380

26.052 3.077 · 10−2 − 3.504 · 10−1 − 3410 374
13.026 2.393 · 10−4 7.006 3.241 · 10−4 10.078 13640 2981
6.513 3.265 · 10−7 9.518 5.065 · 10−7 9.322 54560 23859
3.257 4.330 · 10−10 9.559 6.134 · 10−9 6.368 218240 191180

From these results we conclude that for this example with strong jumps in the material properties the ADER-DG method behaves very
robustly. Furthermore, confirming the results already obtained in the numerical convergence analysis in Section 5, we can see that in order to
reach a certain resolution, less CPU time and also less memory is needed for higher order methods.

6.2 Example 2

In the second example we present the results of a global simulation of seismic waves, which is often problematic for many numerical methods
due to the generation of an appropriate mesh. As FD schemes rely on a certain regularity of the mesh, spherical coordinates are often used.
However, towards the center of the model, the mesh spacing decreases with depth such that the allowed time step decreases drastically
and thus practical computations become difficult. Hence, regular meshes have to be recoarsened successively with depth and interpolation
procedures are required to handle hanging nodes. Therefore, FD methods often are restricted to spherical sections, see e.g. (Igel 1999). Also
the popular SEM relies on rather artificial mesh coarsening towards the center as shown in (Komatitsch & Tromp 2002).
In contrast, the proposed ADER-DG scheme on triangluar meshes demonstrates a much higher flexibility concerning difficult geometries.

Therefore, a circular geometry as needed for the discretization of the radially symmetric PREM of Dziewonski & Anderson (1981) does not
impose any problems. As shown in Fig. 6 a triangular mesh can be built that respects the radial symmetry of the different layers of the PREM.
Furthermore, the local mesh width can be adapted proportional to the local propagation speeds of the seismic waves. Hence, we chose larger
triangular cell in areas with high wave speeds, e.g. in the lower mantle and small cells in low velocity zones, such as close to the surface
or below the core-mantle boundary, where seismic wave speeds decrease dramatically. This way, the time step according to the local CFL
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Figure 6. A quarter of the well adapted, velocity-dependent triangular mesh constructed for the simulation of global elastic wave propagation using PREM.

condition is used in an optimal sense.
As initial condition we use a Gaussian pulse in the two velocity components Q4 = u and Q5 = v given by

Q0
4,5 = Q4,5(�x, 0) = �r1,2 exp

(
−1

2

(
(x − xG)2 + (y − yG)2

)
σ2

)
, (50)

where the location (xG, yG) = (0, 6 · 106) is the center of the Gaussian pulse with a standard deviation of σ = 5 · 104. The normalized
vector

�r1,2 =
(
(x − xG)2 + (y − yG)2

)− 1
2 · (x − xG, y − yG)T (51)

accounts for the dependency of the different velocity components on direction. This initial condition acts as an explosive seismic source at
time t = 0, where a velocity perturbation is excited in radial direction.
In Figures 7 and 8 we show the wave field of the vertical velocity component w at four different times, after 300, 600, 900, and 1200 seconds.
Again we use a non-linear color scale to visualize small amplitudes. At t = 300s a strong reflection of P- and S-waves at the core-mantle
boundary can be observed. At time t = 600s the direct P-wave passes in inner core creating S-waves at the interface between outer and inner
core. When the direct P-wave has passed the earth’s inner and outer core at t = 900s it leaves the inner, stiffer core vibrating. This result is
similar to the observations of example 1 in Section 6.1. Furthermore, the shadowing effect of the core with respect to the direct wave can be
seen clearly. At time t = 1200s a complex wave pattern of reflected, transmitted and converted P- and S- waves has formed that interfere
with each other and produce oscillations basically inside the whole earth.
We note that we do not compare the obtained results with reference solutions, as we only want to demonstrate the performance of the applied
ADER-DG O6 scheme on this problem. A comparison to reference solutions and measured data of real earthquake scenarios will follow in a
subsequent publication where a fully three-dimensional model is used. However, we state that with the proposed ADER-DG scheme of high
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t = 300s

t = 600s

Figure 7. Vertical velocity component w of the seismic wave field for the two-dimensional PREM after t = 300s and t = 600s.



18 Martin Käser, Michael Dumbser

t = 900s

t = 1200s

Figure 8. Vertical velocity component w of the seismic wave field for the two-dimensional PREM after t = 900s and t = 1200s.
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order in space and time we still can resolve very fine features of the global wave field even after long simulation times when waves have
propagated many wavelengths.

7 DISCUSSION AND CONCLUSIONS

We presented the mathematical details, convergence properties and applications of a new numerical approach, termed ADER-DG method,
for the solution of the elastic wave equations on unstructured triangular meshes. The scope of this work has been to introduce and extend
this arbitrarily high order accurate numerical method, originally developed in the field of computational fluid dynamics, to the community
of numerical seismology in order to demonstrate its advantages to commonly used methods. As the amount and quality of information of
the earth interior or of structures and properties of hydrocarbon reservoirs are growing rapidly and are becoming more detailed, it is of
uttermost importance to develop computational tools that can use such models to compute highly accurate synthetic seismograms. In this
work we described a numerical method that helps to reduce the numerical approximation error as much as possible, such that deviations from
measured data have to originate basically from incorrect model parametrization. Therefore, in our opinion the new ADER-DG method can
play a significant role for understanding the processes of wave propagation in complex, heterogeneous media as well as for model validation.
In contrast to existing methods, the proposed ADER-DG scheme retains its high order accuracy and space and time even on unstructured
meshes, which makes it particularly suited for problems of complicated geometry. We clearly could show that due to its sub cell resolution
very coarse meshes can be used, which reduce the amount of required computer storage and allow for large time steps. Therefore, in contrast
to the popular spectral element method, the computational efficiency of ADER-DG schemes increases with the order of accuracy. With the
ongoing, rapidly growing computer power, the arbitrary high order of ADER-DG schemes provide a method, that will automatically follow
these developments, such that we will always be able to reach machine precision just by increasing the desired order of accuracy. In addition,
we demonstrated, that strong material heterogeneities, which often lead to problems in staggered finite difference schemes, can easily be
handled, if element interfaces are aligned with the material boundary, as discontinuities of the numerical approximation are allowed between
two adjacent elements.
We also claim that the proposed scheme is advantageous when considering anisotropic material. In fact, in this case only the entries of the
Jacobian matrices have to be changed. Furthermore, an extension to unstructured tetrahedral meshes for full three-dimensional simulations
has already been achieved. However, result on these topics will be presented in a further publication as this work was intended to give an
introduction of the mathematical formulation of the ADER-DG approach and its applicability to problems of practical interest. The outlined
principles in this paper can then be extended more easily to the three-dimensional and anisotropic case.
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