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2.1 Introduction

In these lectures we shall aim to present some of the theoretical background
which is necessary to pursue long period studies in seismology. Seismograms,
which represent ground acceleration as a function of time at a given seismic sta-
tion, are most readily understood at relatively low frequencies (periods longer than
about 30 s, say) because the influence of asphetical structure is smaller. For exam-
ple, a travel time anomaly of several seconds may correspond, for long period
data, to an offset in phase of a small fraction of a cycle. In short period data, on
the other hand, such a delay time anomaly may offset the waveform by many cy-
cles. In the former case there is some hope of determining adjustments to the
Farth model which will bring data and theoretical seismograms into phase agree-
ment, by means of perturbation theory and inversion of the data. In the short pe-
riod case there is little hope of achieving this, since the corresponding inverse
problem is highly nonlinear. Instead, in the short period case, one is limited to
measuring the travel time delay and then seeking to improve the model so that the
delay is more accurately predicted. Thus, there have developed two basic kinds of
tomography which might be termed “waveform tomography” and “delay time to-
mography”. Within these there are a number of different approaches, making use
of different spectral and temporal domains, different algorithms for the evaluation
of theoretical seismograms, different model parameterizations, etc. The informa-
tion provided by the two approaches is complementary and, indeed, many of the
results of tomography have been reproduced using very different kinds of data
and modelling techniques.
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2.2 Equations of linear elasticity with gravitation and initial stress

Seismic waves in the Farth are governed, in the first approximation, by the
linear theory of elasticity; the attenuation or damping of seismic waves is well de-
scribed in terms of a linearly viscoelastic rheology, and only in the vicinity of
earthquake sources do we expect major departure from these relatively simple me-
chanical descriptions. Tn the Earth the presence of an initial stress field and self
gravitation must be also be taken into account. Here we review some of the basic
elements of the theory of elasticity in the presence of gravitation and an initial
stress distribution. For the case in which the initial stress field is a simply a radi-
ally dependent hydrostatic pressure p°(#), and where the elastic constitutive law is
isotropic, the equations have long been known (see e.g., Love, 1911; Pekeris and
Jarosch, 1958). For the general case, in which there is a non-hydrostatic initial
stress field £, correct statements of the equations are by Dahlen and Smith
(1975), Woodhouse and Dahlen (1978), Valette (1986). FEarlier treatments
(Dahlen, 1972, 1973) give the conceptual basis, using the results of Biot (1965),
but were marred by certain algebraic errors; the treatment by Geller (1988) suffers
from major conceptual errors. The effects of non-hydrostatic initial stress have not
been observed and are invariably neglected; from the theoretical point of view,
however, it is of interest to write down the completely general equations.

We shall use a fixed Cartesian set of axes and express all vectors and tensors
in terms of their components with respect to these axes. Later we shall also make
use of spherical coordinates (r, 6, ¢) defined through

x = (r sin@ cos @, » sin@ sing, r cos 6. (2.1)

Consider a material which is initially in equilibrium under self-gravitation. The
equations of mechanical equilibrium and gravitation may be written

£ =P (2.2)
{p\ 1';": 47:6100 (23}

where /¢ is the initial stress field, ¢’ is the initial gravitational potential and p” is
the initial density, all of which are functions of position x, and where G is the
gravitational constant; the notation ¢, etc. denotes differentiation with respect to
x, and summation over repeated indices is assumed. Upon deformation, the mate-
rial particle initially at any point x moves to the point r = r(x, 2, where ¢ is time.
The stress tensor and the gravitational potential will now be functions of space
and time coordinates; they may be regarded either as functions of the current co-
ordinates, 7; say, or as functions of the initial coordinates of the particle currently
at #;, which we denote by x;, with the understanding that x; and #,, are related by



Long period seismology and the Eartl's free oscillatiois 33

the deformation £ = r(x, £). The momentum equation and the law of gravitation
can be written:

atz’f’ a(D
L =p2;pi (2.4
o7, or; TR )
d d¢ .
., &
or
x.(’j't!;\ b= PXp (p Lt P rt (26)
Xii (x;l-qb‘;).k,:'-‘l?r(?p (27)
where
{‘“}Xg, .
Xp = — 2.8
Xk = = (2.8)

4

Note that we reserve the notation ¢ ; etc. for derivatives with respect to x;; 7 de-
notes the time derivative at constant x — Ze. the material time derivative. Since
mass is conserved, the mass of a deformed volume element &+ must be equal to
that of the corresponding undeformed element d’x; ie. pd’r = p’d’x and thus

Ip=p" (2.9)

where | is the Jacobian

0 (ry, 72, 73)

= W (2.10)
a(xl-:x29 X3)

J=]x

Let us now write

Fo= U, (2.11)

where #, is small, and define the first order quantities p' and ¢' to be the change

2
in density and gravitational potential, at a fixed point in space, due to the defor-
mation. Also we define £} to be the change in stress at a material particle. We may
write

th=1,00)— £ (0 (2.12)
pt=pr)-p' ) (2.13)

o' =) - ¢ (r) (2.14)




34 Jann H. WoobHouse

whence
b=t () = )+ 4y (2.15)
p=pw=p’ x+w+p'=p +upi+p (2.16)
=0 =¢" x+u)+¢' =" +u g+ (2.17)

Making use of the first order approximation
J=det(r; ) =det(§+u; y=1+u; (2.18)
in (2.9) and (2.16), we also find
P = (L P+ upple+ ph) (2.19)
and thus, from the first order terms:
p' == p’s— plup b=~ (P 1) k- (2.20)

In order to complete the system of equations of motion we need to specily the
constitutive law giving the incremental stress £}; in terms of the elastic displace-
ment field #;. The correct form for this relationship depends upon the hypothesis
that there exits an internal energy density function E(x, e, 5) (per unit undeformed
volume or, equivalently, per unit mass), where e is the (exact) strain tensor:

&y= %(f”&a = 6) {221

and s is specific entropy. Here we shall be concerned only with isentropic defor-
mations and shall not consider further any thermodynamic quantities. This is ap-
propriate for the Earth since thermal fluctuations propagate on timescales vastly
oreater than the periods of seismic waves. The implications of the existence of an
internal energy density function have to be worked out to second order in order
to obtain the correct incremental constitutive law; the derivation is somewhat too
lengthy to be included here. A very complete discussion is contained in the mono-
araph by Biot {1965); see also the papers by Dablen (1972, 1973), Dahlen and
Smith (1975}, Woodhouse and Dahlen (1978) and Valette (1986). The result is
that #; can be written:

{ 0 0 0
f:_';' = Cptgty, ol TR o R f{i-h’;“ 2 (2.22)
where the fourth rank tensor ¢ = c(x) possesses the symmetries:

Ciihed = Ciitd = Chilyy - (2.23)
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Following Dahlen and Smith (1975) and Woodhouse and Dahlen {1978) we de-
fine

A = i + 515 (2.24)

il

and write

1 0 0 [
ti= Nty 1+ Lptty b~ byt & {2.25)

The fitst term on the right side of (2.25) is the incremental Piola-Kirchhoff stress
tensor (see e.g., Malvern, 1969).

We now substitute into the exact equations of motion (2.6) and {2.7) the first
order approximations (2.15), (2.16) and (2.17), together with (2.20) and (2.25) and
the first order relation:

xi=O;—u; (2.26)

to obtain the equations satisfied by u and ¢'. On simplification we find:
PP Gt @+ @)y = Dty 8 (2.27)
P =—4nG (P u;) ;. (2.28)

The Earth consists of a number of regions — inner core, cote, lower mantle, upper
mantle, etc., within each of which material properties, it is assumed, are smooth
functions of position. Within each region the equations of motion (2.27) and (2.28}
must be satisfied; across the boundaries separating the regions certain conditions,
ensuring the continuity of traction, gravitational potential and its derivatives and,
where appropriate, continuity of displacement are required. Here we shall only
state them — see Woodhouse and Dahlen (1978) for a detailed discussion. We
identify three kinds of boundaries: welded — e.g,, the boundary between the upper
mantle and the lower mantle at approximately 670 km depth and the Mohorovicic
discontinuity; free slip — the inner core boundaty, the core-mantle boundary and
the ocean floor: and free — the ocean surface or, in the absence of an ocean, the
outer sutface of the solid Earth. Also, the gravitational potential is required to
vanish at infinity. The complete set of boundary conditions is as follows:

Welded:  12,]7=0 (2.29)
[£]5=0 (2.30)
Free-slip:  [#,4;12=0 (231)
[t1"=0 (2.32)

L= ningt (2.33)
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Free: fi= 0 (2.34)
All: [¢']5=0 (2.35)

(¢ m;+4mGplun, 7= 0 (2.36)
Infinity:  ¢' =0 (2.37)

in which n is the unit normal to the boundary and

ti= Ny pry— 0,V (@) + 2% Vi, (2.38)
where
= t)nn, (2.39)

and where V' is the surface gradient operator
Vi=V-nn-V. (2.40)

Equations {2.27)-{2.37} ate to be regarded as governing the four unknown fields
u;(x, £), ¢ (x, ¢,), which represent possible free oscillations of the Earth. All other
quantities: p', #5, ¢°, A,y are regarded as given parameters of the Farth model,
subject to the equilibrium egs. {2.2) and (2.3) and the requirement that ¢, ¢°,, gn;
be continuous at all boundaries and that ¢ vanishes ar infinity. '

In order to represent the excitation of the modes we introduce a specified
force distribution F(x, #) on the right hand side of (2.27) and write

p() ((plz + d),{j”;) - (Aﬂ}’i’ﬁ!. J{'). ;= ‘Fi_ pU ﬂz (241}

The force distribution F is known as the equivalent body force distribution of the
source, In order to represent an indigenous earthquake or explosion sources F
must have the form (Backus and Mulcahy, 1976):

F,=-T

; 5 (2.42)
where I' = I'(x, #) is the stress glut, which represents the failure of the constitutive
law (2.25) and (2.38) to be satisfied in the source region. I" has the important
property that it vanishes outside the source region and its time derivative vanishes
both before the source origin time and after the source has ceased to act. Thus the
stress glut rate T is nonzero only in the finite region of space and time correspond-
ing to action of the source.
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The equations and boundary conditions governing ¢' can be solved for ¢ in
terms of w. In fact ¢' is the gravitational potential due to the density distribution
p'=—(p°u) . together with mass distributions on spherical boundaries having
surface density —[p"2,]7. Thus it is convenient to regard ¢' (x, #) as a functional of
ulx, 4

¢! = ®[u]. (2.43)
The remaining equations, now governing only u can be written, symbolically:
(H +p°)u=F {2.44)

where H represents the integro-differential operator corresponding to the left
side of (2.41), in which ¢' is replaced by @ [u], and also thought of as incorporat-
ing the boundary conditions (2.29)-(2.37).

2.3 Oscillations of a spherically symmetric Earth model

A useful approximate model of the Earth is one which is non-rotating, per-
fectly spherical and in equilibrium with a hydrostatic stress field

0

th=—8;p" (r) (2.45)

where p’(r) is the initial pressure distribution. In this case the above general sys-
tem of equations simplify greatly, and are separable in spherical coordinates. Thus
they are amenable to solution by reduction to ordinary differential equations. De-
viations from this model are relatively small in the Earth, and thus perturbation
theory can be used to incorporate the effects of rotation, ellipticity and other as-
phericity, or more complex initial stress fields.

Under the assumption of hydrostatic initial stress and spherical symmetry the
equilibrium egs. (2.2) and (2.3), together with the appropriate boundary condi-
tions (see above) can be solved to determinate ¢”, p* in terms of the given density
distribution p{(r). We have:

d =94 0= 4—7§— Irpo () ¥2dr {2.46)
7 0
¢ (1) =— rg” () dr (2.47)
= = _GM = Jﬁgo (1) dr (248)
a r

P’ ()= f jp“ (g’ () dr (2.49)
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where ¢ is the radius of the Earth and M is the Earth’s total mass:
M= 41‘.5_[072,00 () dr. (2.50)

When (2.45) is used in (2.22) and (2.24), we obtain

f}; = Chttp, | {2.51)

with
Cit = = P (848 + 8483 — 8;01) (2.52)
A= Cyg+1° (8463 — 6;01) (2.53)

and on using (2.53) in (2.41) the equation of motion becomes:
PD l'g;; + pO (p.li_ (.OUMJ) ,1'¢'0 - (%Pn;) i (Cij.é[uk, [)‘j = Fi' (254)

Also, because of sphetical symmetry C,; cannot be arbitrary but must represent a
tensor field invariant under rotations of the model. The most general form for
such a tensor satisfying (2.23) depends upon just five scalar parameters (see e.g.,
Takeuchi and Saito, 1972) A(r), C(r), F(#), L(r), N(#). Denoting the spherical
components of C by C.,,, C,,.q etc. the nonvanishing elements of C can be repre-
sented as:

Corr = C (1) (2.55)
Coroo = Crroo = Coprr = Coor = T (1) (2.56)
Copgy = ngg =A(r)—-2N() (2.57)
Casgs = Covss = Cogpo = Coppe = N (7) (2.58)
Corer = Cppr = Copmg = Crgro = L (7) (2.59)
Coooo = Coppp = A (1) {2.60)

In the case of isotropy we have:

A=C=l+2,u=:<+-;4—,u (2.61)
N=L=pu (2.62)
Fe e gom o (2.63)

3

| ]
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where A = A(#}, u = pt{r) are the Lamé parameters, K= k{(r) is bulk modulus and u
is shear modulus. In this case:

Cpi = 1 (8 Gy + 8703) + A0, 0. (2.64)
In fluid regions we have:

Nel=p=§ (2.69)

G=d=F=A=x (2.66)

The boundary conditions on u, ¢ for this spherical model may be stated as
follows:

Welded:  [#,17=0 (2.67)
[Cos 7itt, 1)2=10 (2.68)
Fluid-solid: [#,]%=0 (2.69)
[Cye e 17=0 (2.70)
Free: Cp 7yt ;=0 (2.71)
All: [¢'12=0 (2.72)
[9,¢" +4nCp’u,]Z=0 (2.73)
Infinity:  ¢'=0 (2.74)

where £ is a unit vector in the direction of # increasing and where the square
bracket notation is used to denote the discontinuity of the enclosed quantity
across a surface of discontinuity in the model, the contribution from outside the
surface being taken positive.

As in the general case (2.44) the problem of determining the seismic displace-
ment in a spherical Earth model can be written:

(H +p"97)u=F. (2.75)

Taking the Fourier transform in time:

=3

uix, @)= j u(x, £)e ™ dt (2.76)
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o
we have

(H-poyu=F (2.77)

and thus, in order to determine U we need to invert the operator represented on
the left hand side. A natural way to proceed is to represent the solution in terms
of the eigenfunctions s, (x) satisfying:

Hs,=p'aits, (b=1,2,... ) (2.78)
where @f are the eigenvalues. [t is clear that the function
ulx, )= ¢™'s; (x) (2.79)

satisfies (2.75) in the case F = 0 and thus s.(x) represents the spatial shape of a
free oscillation of the model having angular frequency . It may be shown that
the operator H is self adjoint in the sense

J-Vs' Hsd’x = J.VS Hdx {2.80)

for any differentiable s(x), s (x) satisfying the boundary conditions (2.67)-(2.71)
and where the volume integration is over the entire Earth model. From this it fol-
lows that the eigenfunctions s (x) form a complete set and that the eigenvalues o7
are real. Furthermore, if any of the eigenvalues is negative it follows that there ex-
ist exponentially growing solutions of the homogeneous eq. (2.75). The existence
of such solutions would indicate that the equilibrium configuration of the Earth
model was unstable. Since this would clearly be unrealistic we conclude that all of
the @y are real, provided that we demand that the model is in stable equilibrium.
In addition it is not difficult to show that eigenfunctions belonging to different
eigenvalues are orthogonal or, in the case of degeneracy, can be orthogonalised, in
the sense

.[VPUSE’-SMR:O (k2 k). (2.81)

Using these results it is straightforward to obtain a formal solution of the forced
equation of motion (2.75) in terms of a sum of eigenfunctions s;,. We write:

ulx, 1) = Zak (1) s (%). (2.82)

k
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On substituting into (2.75), multiplying by s; and integrating, making use of the
orthogonality relation (2.81), we obtain

4y (D) + 0fa, (O =F, () o (2.83)

with

fysi® Fx. 0d’x 1

oz (2.84)
[y posi (0 s, &% @

By (1=

The ordinary differential eq. (2.83) for each 4.(z) may be solved (e.g., using the
method of variation of parameters, or Green’s functions, or Laplace or Fourier
transtormation) to give

ap (£ = J,m'bi’ = F)dr (2.83)

with

by () =1 —cos w1, (2.86)

a result originally due to Gilbert (1971). As pointed out by Gilbert (1971) this re-
sult needs to be modified to account for attenuation by incorporating a decay fac-
tor exp (—a.#) into the cosine term and thus in place of (2.86) we write:

by ()=1- e % cos il (2.87)

In fact a more careful analysis, similar to that of the excitation of a damped simple
harmonic oscillator, yields a slightly different result, not given here, which is well
approximated by (2.87) in the case of realistically small ey The decay rate of the
free oscillations is also often quantified by “the Q of the mode” O, which is de-
fined in such a way that the amplitude decays by a factor exp (—/Q;) per period
(= 27/ wy,). Consequently O, and o, are related by:

—. (2.88)

Making use of (2.85) in (2.82) we obtain an explicit expression for the theo-
retical seismogram. It is often sufficient to consider the case of a poins source by
which we shall mean a source having spatial and temporal extent small compared
to the wavelengths and periods of interest. In this case it may be shown (Backus
and Muleahy, 1976) that the expression (2.85) can be approximated by the sim-
pler form:

4y () = by (F— £,) Myel (x,) (2.89)

where (x,, #,) denote the spatial and temporal centroid of the source and where the
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syminetric tensor M, the source moment tensor, is given by:

M= ]| Tydd. (2.90)

hy _ 1
i 2
details we refer to the review by Dziewonski and Woodhouse (1983) and to the
literature already cited. Using (2.89) in (2.82) we obtain the following expression
for a theoretical seismogram in a spherically symmetric model:

In (2.89) eﬁ,-'} denotes the strain in the 4-th mode ¢ (_vf,-’_ifﬁ (}I“),) For further

ulx, )= 2[1 —e %) cos wy (- 1)) M,»,eﬁrf")* (x,) s (x). {2.91)

In order to apply this and earlier formulae in this section we need to have calcu-
lated a complete set of eigenfuncions s; (x) together with the corresponding eigen-
frequencies @y and artenuation constants ¢y. For this we refer to the literature,
only quoting the most important results. A thorough treatment is given by
Takeuchi and Saito (1972). Woodhouse (1988) describes an algorithm for finding
all modes, depending on an extension of Sturm-Liouville theory. A review of some
of the salient points, together with expressions for the excitation coefficients are
given by Dziewonski and Woodhouse (1983), citing catlier literature. Phinney and
Burridge (1973) introduce a set of generalized spherical harmonics which enable
any tensor field o be readily expanded in spherical harmonics. These greatly facil-
itate the derivation of the modal equations, and all other calculations in terms of
spherical harmonics, including those of modal excitation coefficients, matrix ele-
ments for modal coupling, etc. (see below). This basic results depend upon the ex-
pansion in spherical harmonics of the vector field s;(x) and the corresponding
perturbation in gravitational potential ¢. Following a traditional approach (e.g,
Mortse and Feshbach, 1953; Pekeris and Jarosch, 1958) we write:

s, = U Y6, ) (2.92)
59= V(N 3gY /O, ¢)+ W () 9, Y6, ) {2.93)
5o= V() cosec 09, YO, 9)— W ()3 Y/'(6, ¢) (2.94)
¢' =P () Y/(6, 9) (2.95)

where Y}” are the spherical harmonics. Here we adopt the fully normalized com-
plex harmonics of Edmonds (1960)

Q20+ 1)(!—m)z]'

V(g = (=1 21)?!1 [ zz'wg‘n (29()
(8, 9)=(-1) [ Py '(cosB) e >

([=0,1,2, cm=-4—{+1,..0)
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where PJ'(x) are the associated Legendre functions:

(1- x2 )rm’Z dﬁ+w
20 At

Pr(x)= (x* = 1), (2.97)

Y7 satisfy the orthogonality relation:
r w ) R
[* [ o o vF @ 0)sin0d0dp = 6,6, 299
-

When (2.92)-(2.95) are substituted into the eigenvalue equation (2.78) they give
ordinary differential equations for U, V, W, P which are independent of 7. These
admit two kinds of solution: (i) solutions with U = V = P = 0, termed torgidal
modes and (i) solutions with W = 0, termed spheroidal or poloidal modes. Collec-
tively U, V, W, P are sometimes called the scalar eigenfunctions and those among
them which are not identically zero satisfy linear systems of ordinary differential
equations, subject to homogeneous boundary conditions. These equations have so-
lutions only for particular, discrete values of @y which are the eigenfrequencies of
the corresponding free oscillations. By virtue of these results modes may be identi-
fied according to mode type g (spheroidal or toroidal), angular order | azimuthal
order m, and overtone number n, where the n enumerates the eigenfrequencies, in
increasing order, for a given mode type and angular order. The mode index &
used earlier may be thought of as consisting of the four subindices k=1g, !l m, n.
Since the ordinary differential equations governing the scalar eigenfunctions are
independent of 7z, the eigenfrequencies @, are the same for all # in the allowed
range -1 < m < —; i.e. there are 2/+1 different eigenfunctions corresponding to the
same eigenvalue @, which are said, therefore, to be constitute a (2{+1)-fold degen-
erate multiplet. Individual members of a multiplet are termed singlets. The normal
mode multiplets are conventionally referred to by the notations ,5; for spheroidal
modes and T for toroidal modes. The spheroidal modes with / = 0 have eigen-
functions which possess only radial displacements and are spherically symmetric.
These are termed the radial modes.

Having introduced the representation of eigenfunctions in terms of spherical
harmonics, it is convenient to write the fundamental eq. {2.91) in the simplified
form {Woodhouse and Girnius, 1982)

!
u(x, ;):2 Z SP(x,) sy (x,) & (2.99)
i !

m=—

where the real part is understood. In writing (2.91) in this way we have introduced
certain notational changes. First we have redefined the mode index % so that it
now refers to multiplets: k= (g, I, n); individual singlets within a multiplet are la-
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belled explicitly by the additional index 7. Second, we have omitted the first term
in brackets [ 1in (2.91). This term contributes a time-independent displacement
field, which represents the final configuration of the model after all modes have
died away. By omitting it, therefore, we obtain an exptession representing the dis-
placement field relative to the final, rather than the initial configuration of the
model. (In fact the static offset is not observed seismically owing to noise and in-
strument characteristics.) Third, we have defined the complex frequency

o, = w (1 +220;) (2.100)

in order that the exponential in {2.99) includes the decaying exponential in (2.91).
Fourth, we have defined:

Spx,y = -Myel (x,). (2.101)

Finally, the location x, at which the diplacement is evaluated, has been given the
subscript 7 to emphasize that in comparing with observations the seismogram is
evaluated at the receiver location.

A particular seismogram is obtained by operating upon (2.99) with the “in-
strument vector” v, which is defined to be a unit vector in the direction of motion
sensed by the instrument; v may also incorporate an operatot, or, in the frequency
domain a function of frequency, characterizing the instrument response. The
seimogram may then be written in a way which involves the source and receiver
rather symmetrically:

vou= Y REGE,. 0)SE (O, 696 (2.102)

e

where R} (8, , 9,), S¥ (0,, ¢,) are given by expressions involving spherical har-
monics evaluated at the receiver and source. Explicitly

1
R (6, 90= Y, RnY1"(0..9) (2.103)
N=-1
2
5S¢ (6, 0= 2 Sin Y10, ) (2.104)
N=-2
where Y are the generalized spherical harmonics of Phinney and Burridge

(1973) and where K.y = RN(0, 0), S,y =S¥ (0, 0) are given by expressions involvin

: e = I Wy VE Opn = O & y exp g
the scalar eigenfunctions U, V, W evaluated at the surface and at the source
depth, respectively. The formulae for Ry involve the spherical components of

P esp ) AN

the receiver vector »,, vg, v, and those for S,y involve the moment tensor com-
ponents M,,, Mgg, Moo, Mg, Mg, Mgy (see Woodhouse and Girnius, 1982 for
explicit formulae).



Long period seismology and the Earth's free oscillations 45

2.4 General characteristics of modal multiplets

Normal mode multiplets can be though of as points in the @ — [ plane. Fig-
ures 2.1ab, taken from Gilbert and Dziewonski {1973), show such déspersion dia-
grams for the low frequency toroidal and spheroidal modes. Lines joining the dots
define lines of constant overtone number #. By convention the lowest frequency
mode, for a given /, is designated the fundamental mode and has 7 = 0. These cor-
respond to the fundamental mode Love and Rayleigh waves in the toroidal and
spheroidal case, respectively. The solid dots in Figures 2.1ab indicate modes
which had been observed up to 1975.

Presently we shall take a tour of the @ =/ plane, showing examples of eigen-
functions, in order to gain some physical insight into the nature of the modes. Be-
fore doing this, however, it is useful to introduce the concept of a differential ker-
nel, which is a function representing the sensitivity of a modal eigenfrequency to
small changes in the (spherically symmetric) Earth model, This brings us into the
vealm of perturbation theory. This is of great importance if we wish to make infer-
ences about Earth structure from modal measurements. Suppose that a number of
modal frequencies , @}, , o] have been measured. These will not agree precisely
with the predictions of a given Earth model and thus we need to address the ques-
vion: How can we modify the Earth model to bring it into agreement with the obser-
vations? This is an fnverse problem of the type which will be the subject of a num-
ber of the lectures at this school. First, however, we need to know how to solve
the forward problem: if we make a specified small adjustment to the Earth model
how will it affect the predictions of the modal eigenfrequencies? We do not attempt
to cover modal perturbation theory in full detail in these lectures. For the spheri-
cal Earth, with which we are here concerned, see Backus and Gilbert {1967),
Woodhouse (1976). Here we approach the topic in a heuristic way, in order to il-
lustrate some basic principles and to gain insight into the properties of modes and
what they are likely to tell us about the Earth.

Suppose that our Earth model consists of a number of spherical layers and,
for a given mode, imagine that a particular parameter, density p°, say, is perturbed
by an amount &p; in the 7-th layer, all other layers remaining unchanged. If the
perturbation is small enough, the change in the cigenfrequency of the multiplet
will be proportional to 8p; and so we can define a proportionality constant K say,
such that the corresponding change in the eigenfrequency is given by

p;
S =Ky — Ar, (2.105)

‘

where Ar; is the layer thickness and p; is the unperturbed density in the layer.
Then if density is simultaneously perturbed in all layers, and if the perturbations
are small enough, the corresponding change in eigenfrequency will be the sum
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over all layers:

o0
= K, % Az, (2.106)

I

In the limit that the number of layers is infinite this sum will become an integral
over radius » and we can write:

ap ()
()

dr. (2.107)

S = JK (7)

K, (r) represents, therefore, the sensitivity of an eigenfrequency to adjustments in
density at each radius 7. Similarly we can define K, (r), Kx(#) to represent the sen-
sitivity to changes in bullk and shear moduli. Here we shall take p, vp and vy as the
fundamental mechanical parameters of the (isotropic) model, and write:

af op(r) dvp (7) dvs ()
o= | I\p(r)p ()+K,,() #Ks () 22

vp () vs (r)

dr. (2.108)

Thus, for each mode, it is possible to define differential kernels Kp(r), Ks(r), K,(#)
which provide the answer to the forward problem through (2.108). In fact, 1t is
possible to derive exact expressions for such kernels in terms of various quadratic
forms involving the scalar eigenfunctions of the mode. Explicit results are given by
Backus and Gilbert (1967), Woodhouse (1976}, Dziewonski and Anderson (1981),
Figures 2.2a-e show examples of the eigenfunctions and kernels for a repre-
sentative set of multiplets. For each multiplet there are two panels, one above the
other. The top panels show the scalar eigenfunctions — {W(r) (dashed) for
toroidal modes and U (#) (solid) and {V(r ddshed) for spheroidal modes, where
& = [(/+1); the factor { is included so that the ratio of the two scalar ezgc,nfum-
tions for spheroidal modes U{#)/{V(#) correctly reflects the ratio of vertical to hori-
zontal motions. The lower panels for each mode show the differential kernels Kp(7)
(solid), Ks(#} (dashed) and K, () (dot-dash). The period and Q of the mode are given.
All calculations are for the modd PREM of Dziewonski and Anderson {1981).
Figure 2.2a samples the fundamental toroidal modes. (T, represents a differ-
ential rwisting of one hemisphere relative to the other. By examining the eigen-
function we see that the amplitude of the motion is about half as large at the core-
mantle boundary (CMB) as at the surface. In common with all toroidal modes, the
motion is purely horizontal and does not involve the core. By examining the dif-
ferential kernels we find that the frequency is increased if v is increased anywhere
in the mantle, with p held fixed, the maximum effect being produced by a (rela-
tive) change in vy close to the 670 km discontinuity. If, on the other hand, density
is increased, with »g held fixed, the effect is to reduce the frequency if the change
is made in the upper mantle, and to increase it if the change is made in the lower
mantle. (T5 has similar properties, except that its sensitivities are smaller in the
lower part of the mantle. Progressing along the fundamental mode branch we see
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that the modal displacements and sensitivities become concentrated nearer and
nearer to the surface, and that sensitivity to density becomes progressively smaller.
This is because at high angular order the toroidal modes correspond to Love
waves, which may also be thought of as multiply reflected SH waves, having,
asymptotically for large /, no sensitivity to density. For example Ty, having pe-
riod 106.7 s, has appreciable diplacements only in the upper mantle, and has little
sensitivity to vg at depths greater than 300 km,

Figure 2.2b shows examples of toroidal mode overtones at fixed angular or-
der 7 = 30. The general property illustrated is that as overtone number increases
the eigenfunctions become more oscillatory with depth and penetrate more deeply
into the mantle. Also note that for high overtones the density kernel oscillates
about zero; although such modes can be affected by localized density perturba-
tions, the effect of smooth density perturbations will be small, since positive and
negative contributions will tend to cancel in the integral (2.108). The v kernel, on
the other hand, oscillates about a non-zero value; it is this slowly varying mean
value which will give the main contribution for smooth changes in vg(#). Again
these properties reflect asymptotic properties of the modes, which may be thought
of as standing waves set up by mult1p1v reflecting SH body waves, which dip more
steeply into the mantle with increasing overtone number #. Thus, for example,
,T5o corresponds to SH having a turning point in the lower mantle, whereas 575
corresponds to SH waves travelling almost vertically, bouncing between the sur-
face and the CMB (see below).

Figure 2.2c samples the fundamental spheroidal modes. (§,, known as the
“football mode”, was one of the first observed (Benioff ez af., 1961), following the
great Chilean earthquake. Its displacements are nonvanishing throughout the
Earth; its greatest sensitivity is to perturbations in vy, to a lesser extent, p in the
lowermost mantle and vp in the upper half of the mantle. Progressing along the
fundamental mode branch, displacements and sensitivities become progressively
concentrated nearer to the surface, and sensitivity to density diminishes, as in the
case of toroidal modes. At higher values of / these modes correspond to Rayleigh
waves. Note that their greatest sensitivity is to o5 at a depth somewhat below the
surface, which makes them useful for probing upper mantle v5. On the other
hand, they have relatively high sensitivity to vp at shallow depths.

Figure 2.2d shows examples of spheroidal mode overtones, at angular order
!/ = 30. These display behaviour similar to, but more complicated than observed
for toroidal mode overtones. Note that the spheroidal mode spectrum contains a
variety of different families of modes., For example the (unobserved) mode 354
corresponds to a Stoneley wave propagating at the CMB; this is similar to a
Rayleigh ware, but trapped near the CMB rather than near the Earth’s surface.

Finally, Figure 2.2e shows samples of the radial modes .5, which, at high »,
correspond to vertically travelling PKIKP, having little sensitivity to (smooth) den-
sity perturbations, almost vanishing sensitivity to vs, but significant sensitivity to zp
throught the Earth. Note that they have high Q values (Ze., low attenuation), a
property which makes them relatively easy to observe in long seismic records fol-
lowing great earthquakes.
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2.5 Some asymptotic properties of free oscillations

In the foregoing discussion we have mentioned the correspondence between
the free oscillation multiplets and various kinds of travelling waves — both body
waves and surface waves. The nature of the correspondence between surface
waves and modal multiplets has long been apparent, since the traces from which
modal spectra can be readily obtained, consist of word-circling Rayleigh and Love
wave orbits. The modal peaks appear in the spectrum as a result of the construc-
tive interference which occurs when the spectra of individual wave packets are su-
perposed. The nature of the correspondence between modal overtones and body
waves, first pointed out by Brune (1964, 1966), can be made more precise by ex-
amining the asymptotic behaviour of solutions of the ordinary differential equa-
tions for the scalar eigenfunctions, using the JWKB and related asymptotic tech-
niques (Brodskii, 1975, 1978; Woodhouse, 1978; Kennett and Woodhouse, 1978).
Here we shall touch only briefly on the topic, since our aim is to gain physical in-
sight into the properties of free oscillations, rather than to develop a complete cal-
culational scheme.

The essential quantitative connection between modes and travelling waves is
made by equating the horizontal wavelength (or wavenumber) of the mode with
the corresponding horizontal wavelength (or wavenumber) of a travelling wave.
For modes, this wavelength can be derived from the asymptotic properties of the
spherical harmonics for large /. Let us consider a source at the pole 6 = 0. Such a
source excites only the modes having low azimuthal order . For a point source
only the orders having | 7| < 2 are excited (egs. (2.103} and (2.104)).

For fixed m and large / we have (e.g., Abromowitz and Stegun, 1965):

1 ¥
Y0, ¢)~ L (sin )2 cos [([+ l) Gn ks & ?I':I o™ (2.109)
b 2 2 4

and, since we are considering a source at the pole, 8 plays the role of epicentral
distance, Thus we can immediately identify the horizontal wavenumber & (= 27/
wavelength) to be

k:(l+%)/a. (2.110)

The angular order /, therefore, is a proxy for wavenumber £ and dispersion dia-
grams such as those shown in Figures 2.1a,b can be interpreted, for large /, in the
same way as are dispersion relations @ (%) for surface waves. In particular, we can
define phase velocity

(@) =2 2.111)

3
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and group velocity
_dw
Ulw) = 7 (2.112)

In order for these relations to be valid we need to extend the definition of the dis-
persion curves to continuous, rather than integer values of /. The mathematical
justification for doing this is contained in a number of papers on the theory of
waves in and around spheres (Watson, 1918; Gilbert, 1976). This defines the rela-
tionship between the @ —/ plane and the dispersion properties of Love and
Rayleigh waves and their overtones.

In the case of body waves we may, similarly, identify the horizontal wavenum-
ber in terms of frequency and ray parameter p. From classical ray theory in the
spherical Earth, the horizontal wavenumber at the Earth’s surface for a
monochromatic signal travelling along a ray with given ray parameter p = dT/dA
is

o)
=22 (2.113)
a
Therefore, using (2.110), we write
l+%
p = (2.}.14)
w

Thus a mode of angular order / and angular frequency ® is associated with rays
having the ray parameter given by (2.114). For toroidal modes these are S-rays,
and for spheroidal modes they are both P- and S-rays. It is well known that rays
exist only for ranges of depth for which

L & P for P-waves {2.115)
Vp (?")
zp for S-waves (2.116)
v (¥)

In the diagrams of Figures 2.2a-e, the ranges of depth for which these inequalities
are satisfied are indicated in two columns on the right side of each panel. The left
column is for P-waves (relevant only for spheroidal multiplets) and the right col-
umn for S-waves. Inspecting these figures it will be seen that the sensitivities do
have the approximate behaviour we would expect, namely that sensitivity to vy de-
cays below the S-turning point and that to vp decays below the P-turning point. In
fact there are further quantitative relationships between the dispersion diagrams
and the travel times of the corresponding rays, which mean that the information
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contained in the dispersion diagrams reproduces much of that contained in travel

time data.
As an illustration we state the simplest such approximate result (Brune 1964;

Brodskii, 1975), for toroidal modes:

2r(n+ )
= ———-
T(p)

(2.117)

where § is either 0 of l depending upon whether the S-ray is reflected from the

core or turns in the mantle, and where 7(p) is the ray theoretic intercept time

- = dr. (2.118)

U§ r

(=T -pp=2] (L-L)

r,(p) is the turning radius or, in the case that the ray does not have a turning
point, the radius of the CMB. Equation (2.117) predicts that along the line of con-

stant p = ([ +%)/ @ in Figure 2.1a, the modes are equally spaced, and that their

spacing in @ is equal to the ray theoretic quantity 2a/7(p). This result is only ap-
proximate, but it reflects the important fact that the information contained in the
multiplet frequencies is highly redundant, and duplicates that available from travel
times.

2.6 Oscillations of an aspherical Earth model

The calculation of theoretical seismograms in a non-spherical model is diffi-
cult and expensive in terms of computer time. Although there exist formulae
which are, at least in principle, exact, they involve the manipulation of infinite di-
mensional matrices and have not been applied in complete form. Similatly, it is
conceivable to generate accurate theoretical seismograms by purely numerical
techniques (e.g., finite differences), but this has not yet been achieved. In fact the
problem encountered in seismic tomography is much greater than that of calculat-
ing theoretical seismograms (the forward problem); in order to obtain useful solu-
tions to the inverse problem it will undoubtedly be necessary to carry out caleula-
tions equivalent to at least many thousands of forward problems. As a result, sev-
eral approximate schemes have been developed. Naturally there are intimate con-
nections between the different schemes, which have been elucidated in a number
of theoretical papers. A number of aspects of this complicated field will be de-
scribed in other lectures at this school, Here I shall only describe some of the
schemes which have been applied and indicate some of the connections between
them.
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Splitting theory — One of the primary effects of asphericity is to remove the
degeneracy of the modal spectrum. Each degenerate multiplet is sp/i into singlets
of slightly different frequency. The theory of modal splitting is similar to that gov-
erning the splitting of the degenerate energy levels of a spherically symmetric atom
subjected to some aspherical perturbing influence, such as a magnetic field. In
seismology the theory of splitting has been developed in a series of papers begin-
ning in 1961, when the splitting effect of rotation on the mode 45; was observed
and explained (Backus and Gilbert, 1961; Pekeris et al., 1961; Dahlen, 1968, 1969,
1974; Woodhouse and Dahlen, 1978); see Dahlen (1980) for a review. The way in
which asphericity affects a multiplet can be shown to be approximately indepen-
dent of other multiplets, provided that the multiplet is isolated in the spectrum —
i.e., not overlapping in frequency with other multiplets. This form of the theory is
known as degenerate splitting theory. Il there are two or more overlapping multi-
plets which are, nonetheless, an isolated group, a modified version of splitting the-
ory known as quasi-degenerate splitting theory can be developed (Dahlen, 1968;
Luh, 1973, 1974; Woodhouse, 1980; Park, 1987, 1990; Um and Dahlen, 1992}, al-
though this form if the theory has not vet been applied to the inverse problem. If
all modes are considered to be one group, this theory is essentially exact (Wood-
house, 1983}, but it is much too cumbersome to be applied in practive. Thus ap-
plications of splitting theory seek to apply a complete theory to a restricted set of
multiplets, judiciously selected to include the effects of interest in a particular
class of seismic data (see, for example, Um and Dahlen, 1992).

Consider an isolated multiplet # having, in the spherical Earth, degenerate
eigenfunctions s7{x), (m = -/, —I+1, ..., {) and (complex) eigenfrequency @j. Then
it possible to define a (2/+1) x (2/+1) matrix H? known as the splitting matrix
of the multiplet, and having elements H}, which are known linear functionals of
the aspherical {(and spherical) model perturbations and also include terms due to
the rotation and ellipticity of the Earth (for explicit formulae see Woodhouse and
Dahlen, 1978). Let U* be the matrix whose columns are the eigenvectors of
H® and let Q® be the corresponding diagonal matrix, whose diagonal elements
QP (7 =1, 2, .., 2/+1) are the corresponding eigenvalues. Then the result of de-
generate splitting is that the eigenfunctions of the aspherical model are given by

P =Y U0sg® (=1,2, ., 2+1) (2.119)

with corresponding eigenfrequencies @ + Qﬁf”.

To obtain the perturbed seismogram, it is necessary to expand the equivalent
body force density F(x, #) in terms of uff’) (x). This can be done by making use of
the known expansion in terms of s (x). It can be shown (Woodhouse and
Girnius, 1982) that when this is done one obtains an expression for the perturbed

seismogram of the form (¢f. 2,102)

— Z REAB,, ¢.) AL ()™ (2.120)

»{’HI
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where A% () is the solution of the initial value problem

AP () =S8, ¢,) (2.121)
A () =1 Z HY.AY (). (2.122)

Thus at time 0 egs. (2.102), for the spherical Earth, and (2.120) for the aspherical
Earth reduce to the same expression, but with increasing time the apparent modal
excitations evolve according to (2.122). It is this additional, slow time variation
that leads to the split spectrum in the frequency domain. Equation (2.120) leads
naturally to an inverse problem for the splitting matrix elements H, for the mul-
tiplet, by seeking to determine the values which enable the spectrum of (2.120) to
match observed spectra for the multiplet. This inverse problem can be simplified
by noting that the splitting matrix may be represented in terms of rather fewer un-
knowns c,;, which represent the spherical harmonic expansion coefficients of a
certain function 7™ (8, ¢) which is termed the splitting function of the mulriplet.
We have:

H,r = QB8 w.a, 2 2 " ey (2.123)

L2 t=—5

ee= Y D Y (2.124)

s=0,2,...,2 t=-s

where the first term is the (known) contribution due to the action of Coriolis
forces (Dahlen, 1968) and ¥/ 'known numerical coefficients. For further details
we refer to Giardini e al. (1987, 1988), Ritzwoller ef al. (1988).

The important point is that knowledge of the splitting matrix is equivalent to
knowledge of a certain function on the sphere. This function has a finite spherical
harmonic expansion, containing only even spherical harmonic degrees. Further-
more the splitting coefficients c,, are related to the internal heterogeneity of the
Earth of degree s and order # by means of differential kernels, in much the same
way as was discussed above for the case of spherically symmetric perturbations.
Examples of these kernels and the retrieved splitting functions for certain modes,
taken from Giardini ef 4/ (1988), are shown in Figures 2.5a-d and 2.6a-d. T]C
kernels depend upon s, but not on £ In fact their dependence on s is small except
in the case of very low ! modes In the case that the dependence on s can be ne-
glected, the splitting function 7% (8, @) is simply a depth average of the local struc-
ture beneath the point (8, @), with averaging kernels such as those depicted in Fig-
ures 2.5a-d and 2.6a-d.
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This result reflects the long known fact that within degenerate splitting theory
theoretical seismograms have no dependence on odd degree structure. Since even
degree harmonics have even parity under point reflection through the centre of
the Earth, and odd degree harmonics have odd parity, this means that the pre-
dicted waveforms are sensitive only to the average properties at antipodal points,
and have no sensitivity to the difference in structure between antipodal points.
Clearly this is not the case for travelling waves, and thus it represents a shortcom-
ing of degenerate splitting theory. Nevertheless it is true for many kinds of data,
that the sensitivity to even degree structure is much greater than that for odd de-
gree structure, and consequently that even degree structure is better constrained
in tomographic models, Such insensitivity to odd degrees was first pointed out by
Backus (1964), in connection with the interpretation of mean phase velocities
measured for great circle paths.

Figures 2.3a-h and 2.4a-h, taken from Giardini ez a/. (1988) show examples of
spectral segments which have been used in the inverse problem for ¢,,. Solid lines
show observed spectra (amplitude and phase) for narrow intervals in frequency
centred on the multiplet of interest. Dashed lines in Figures 2.3a-h and 2.4a-h
show the predictions of splitting theory; in Figure 2.3a-h only splitting due to rota-
tion and ellipticity are taken into account, and in Figure 2.4a-h splitting predicted
by the retrieved splitting functions has been included. Vertical bats at the bottom
of each panel show the distribution of singlets and their relative excitations. These
figures illustrate the fact that it is not usually possible to resolve the individual sin-
glet frequencies within the multiplets; this is because of the effects of attenuation
and finite record length, which introduce “smearing” in the spectral domain. The
underlying singlets contribute to the spectrum, according to their excitations, but
it is only their combined effect which can be observed. It is also clear that the ob-
servations and the model predictions are very discrepant in Figure 2.3a-h, which
does not include the effects of heterogeneity, but that models of heterogeneity can
be found which enable the observations and the theory to be brought into close
agreement. Naturally, it is necessary to use many spectra for the same multiplet in
order to retrieve the splitting function of the multiplet, Each observed spectrum
yields a different sample of the undetlying singlet distribution, counteracting the
difficulty of not being able to retrieve the singlet distribution directly.

The strength of this approach is that it enables us to extract information from
very long period data which cannot be interpreted in terms of rays and travel
times. Since the wavelengths invelved are comparable to the Earth’s radius, such
data average over large volumes of the Earth, enabling us to constrain the very low
wavenumbers of the spectrum of heterogeneity. When applied to modes sampling
the Earth’s inner core the method confirmed the existence of a strong zonal effect
(Masters and Gilbert, 1981; Ritzwoller e 4/, 1986) and led to its interpretation in
terms of inner core anisotropy (Woodhouse et al., 1986; Morelli et al., 1986; Giar-
dini e af., 1987). As illustrated in Figure 2.5a-d, there are a number of modes
which are ideally suited to estimating mean lower mantle $-heterogeneity (of low
degree), and others (Figure 2.6a-d) possessing significant sensitivity to mantle vp.
Such information was used by Li ef al. (1991a,b) to estimate the mean lower man-
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Figure 2.3a-h  Examples of data (solid lines) and synthetic spectra (dashed lines) in spectral
windows containing one or two modes. For each window are indicated the name(s) of the multi-
plets, the range of the horizontal frequency axis (in millihertz), the earthquake date, and the
recording station. The complex spectra are represented in terms of phase in the interval (-7, 7)
(top panel of each figure), and amplitude on an arbitrary scale (middle panel). Vertical bars in
the bottom panels indicate the frequencies and relative amplitudes of the singlets contributing
to the theoretical spectra, computed for the reference model PREM incorporating the effects of
rotation and ellipticity. Vertical dotted lines delineate the portion of the signal used in the inver-
sion. The variance ratio is a measure of the misfit between the observed and synthetic traces
computed in terms of the complex spectra. The durations and starting times (relative to event
origin time) of each record are respectively (a) 48.,6,; (b) 48.,6.; (c} 140.5.6,; (d) 140.,11.8,; (e)
80.,1.4.; (f) 80.,1.6.; (g) 80,15, and (h) 60.,7 all in hours. (From Giardini ef o/, 1988).
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Figure 2.4a-h  Dara (solid lines) and synthetic spectra (dashed lines), as in Figure 2.3a-h, but
with the synthetic spectra obtained using the splitting functions derived by inversion: of many
such spectra. See caption to Figure 2.3a-h. (Taken from Giardini et af., 1988).
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tle ratio of § to P heterogeneity, obtaining a value of 4 In v¢/d In vp much higher
than had been anticipated. Some more recent measurements of modal splitting are
by Widmer e al (1992).

The short time approximation — For sufficiently small times, ¢, eq. (2.122) has
the solution

7 ()=S0, , 0)+ z'rz HY, 47 (). (2.125)

Since H%®), is linear in the model perturbations, this leads to a linearized relation-
ship between heterogeneity and the seismogram; that is to say it yields the partial
derivative of the seismogram with respect to aspherical model perturbations, Us-

ing (2.125) in (2.120) we obtain the short time approximation

vou= ) REO,, 3T (6, ¢ (1+ids)
bk —

where

T RE (8., 6,) HiSE (6, ¢,)

2, REAO,. ¢) ST (6, ¢)

Equation (2.126) can also be written, to the same formal precision,

viu= Y RY(6,. ¢)SF (6, ¢) exp {i(@+ )1}, (2.128)
!iCit‘i

This form of the equation shows that the effect of heterogeneity is to modify the
apparent frequency the mode by the amount A; which, importantly, depends upon
the source and receiver locations.

Early observations of the effects of heterogeneity on the measured frequencies
of the fundamental mode had identified this effect (Buland et 4/, 1979). Within
the modal picture it is, at first, puzzling, since one thinks of the eigenfrequencies
as purely functions of Earth structure, and not of the path. However, within the
travelling wave picture, it is clear that measured phase delays will characterize
the path along which surface wave packets propagate between source and re-
ceiver. Equation (2.128) provides one of the connections between the mode and
ray pictures of the oscillations. The way in which it comes about that the mea-
surement of the location of a spectral peak is affected by the path is illustrated
in Figure 2.4a-h. For example, Figure 2.3d, for the fundamental mode 45; the
peak is moved to the left, since the excitation of the higher frequency singlets
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core-mantle boundary, and the inner core boundary. These represent, on the same scale as the
other kernels, the effect of a boundary defleccion equal to 1% of the Larth’s radius. In this and
in the following figures we display modes with similar differential kernels. The modes shown
here show predominant sensitivity to up structure in the lower mantle. (From Giardini et al.,
1988).
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is very small, reflecting the fact that the source-receiver great circle path, in this
case, samples regions of low phase velocity.

[t is of interest to investigate this effect further, and to determine the way in
which the location parameter 4, depends upon the geographical distribution of
heterogeneity, as represented by of the splitting function n'® (8, ¢). We find

- f J”K“” 6, §) 1™ (6, ¢) sin 6469, (2.129)
- v

Explicit expressions for the sampling kernel K*' (8, ¢) are given by Woodhouse
and Girnius (1982). Figures 2.7a,b, taken [rom their paper, show examples of
these. The figures show a rectangular (linear) projection of the globe and the
shape of the kernel is illustrated for a source on the “equator” at the “eastmost”
(left) end of the plot. The receiver is also on the “equator”, 108° to the “west”.
The kernels are shown (for an explosive source and a vertical instrument) for the
fundamental modes 5; and (S5, For both modes the systematic peak along the
great circle path is apparent, becoming more clearly defined as angular order in-
creases. In the limit of large /, A, represents just the great-circle average of n'*,
which, again for large / is equal to the change in eigenfrequency corresponding to
the /ocal radial structure at each point of the globe. Thus we have:

i 5010 (6. ) do (2.130)

27T ¥ greatcircle

where do represents angular distance along the great circle path, a result derived
by Jordan (1978) by an asymptotic analysis of the equations governing degenerate
splitting. This result is most easily understood in terms of the ray picture of sur-
face wave propagation, where it represents the fact that the phase delay of a sur-
face wave is an integral of local phase slowness along the path (see below). The lo-
cation parameter A, representing the spectral pealk shift, arises from demanding
constructive interference of globe-circling wave packets.

The short time approximation (2.125) has been extended to include interac-
tions between all multiplets by Woodhouse (1983) (also Tanimoto, 1984). The
resulting formulae can be regarded as giving exact expressions for the partial
derivative of a seismogram with respect to perturbations in Earth structure from
an initial, spherically symmetric, model. Thus, to the extent that seismograms de-
pend linearly on structural perturbations this is all that is needed. Unfortunately,
such dependence is far from linear whenever the perturbations result in travel
time shifts more that a fraction of the period. The situation can be alleviated
somewhat by incorporating the secular terms (i.¢., those proportional to ¢) into
frequency adjustments such as was done in passing from (2.126) to (2.128). The
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resulting expression for the seismogram can be written
V'U:ZA,E exp {7 @y ¢} (213D
£~

with (neglecting density perturbations which introduce additional terms)

gk om'
zmm'lii' H i’ Si’

__2 2
Of=wpy 2tk (2.132)
L, RESY
Ap= Y RESE+ Y ——— 3N REHE S+ R Hék} (2.133)
" LER W — o want’ want’

Where the matrix elements HY, are defined in a similar way to the splitting ma-
trix elements H® introduced above, but which now are defined for all pasrs of
multiplets. The self coupling terms are (again neglecting density perturbations)
H ;\r/(m = 2(0,(, H 551)11"

Certain alternative exact and asymptotic approximations to these expressions
have been derived, which enable further connections to be made between the
mode and ray pictures (Romanowicz and Roult, 1986, 1988; Romanowicz, 1987;
Snieder and Romanowicz, 1988; Romanowicz and Snieder, 1988} and which also
elucidate the connection with the Born approximation and incorporate the effects
of anisotropy. First order scattering theory, which leads to the Born approxima-
tion, is an alternative way of calculating the linearized effect of heterogeneity,
which must, of course, coincide with the theory outlined here. In addition, the
connections between the mode and ray pictures point towards the shortcomings
of ray theory and enable the “width” of a ray to be quantified, in much the same
way as it was shown above that the location parameter A is characterized by a dis-
tributed averaging kernel over the globe, rather than by a simple line average
around the great circle. Li and Tanimoto (1993) derive a practicable algorithm for
calculating the differential kernels of long period body waves by limiting the sum-
mations in (2.133) to those in the group velocity window close to a A/T(A), where
A and T(A) are the distance and travel time of the phase of interest. Li and Ro-
manowicz {1994) apply this method to the inversion of three dimensional mantle
structure and compare the results with those obtained using a less sophisticated
theory. Certain higher order scattering approximations have also been developed
(e.g., Pollitz, 1994). A number of such developments will be discussed in other
lectures at this school.

These developments are adding to our understanding of the way in which
heterogeneity affects seismic observations; it must be borne in mind, however, that
results of this kind depend upon the short time approximation, and while they en-
able the connections between the ray and mode pictures to be clarified, they do
not supercede ray theory itself. Ray theory is an asymptotic theory which depends
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upon the assumption that the scale lengths characterizing heterogeneity are large
compared with the wavelengths of interest. It is not a short-time theory, and is not
a perturbation theory, in that it can deal with arbitrarly large strucrural variations,
provided that they are sufficiently smooth on the scale of a wavelength. Thus the
domains of applicability of ray theory and scattering theory are different. Natu-
rally, where their domains of applicability intersect, they give similar results, and
the linearized predictions of ray theory must agree, in the case of sufficiently
smooth perturbations, with the predictions of first order scattering theory.

Surface wave ray theory — The fundamental idea of ray theory is that locally
any kind of wave, of fixed frequency e, is approximated by plane wave of the
form

u=A exp (iwt—ikx). (2.134)

Since we are here considering surface waves, x is a measure of distance in some di-
rection (the direction of propagation) in the surface, and # is some component of
displacement. Since the surface may be curved, and since the properties of the
medium vary laterally we need to allow the horizontal wavenumber & and the am-
plitude A to vary laterally on the scale of variation of the medium. A general way
of doing this (Bretherton, 1968; Gjevik, 1973; Woodhouse, 1974; Woodhouse and
Wong, 1986) is to replace (2.134) by the expression

ulx, , §) = Alx, 7, #) exp (—iy(x, £)) (2.135)

and to define the local wavenumber and frequency of the wave to be

j = B p=—2Y (2.136)
dx® ot

Here x denotes a pair of coordinates in the surface, which we denote individually
by x" (=1, 2), x' = 8, x* = ¢, say. We then demand (in a mathematically well de-
fined way) that the amplitude A and the wavenumber £ (and possibly the fre-
quency @) vary slowly — on the same scale as the lateral variations in structure. It
can then be shown that A(x, 7, ), as a function of » at constant xg, £, must be an
eigenfunction of the local cigenvalue problem corresponding to the frequency and
wavenumber @, &, — 7. its dependence on # must be the same as in a laterally ho-
mogeneous medium having everywhere the properties which exist at the point xg,
t. Of course, although it is allowed by the theory we shall only need to consider
the case in which the structure is independent of . As a consequence, frequency
and wavenumber must be related by the local dispersion relation @ = w(k,, x%) ie.

ayr i -
S =0. 213
5 +a)(axa x) (2.137)
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This is a partial differential equation for the phase , and it is in the form of the
Hamilton-Jacobi equation which occurs in classical mechanics. The dispersion rela-
tion @(k, , x%) plays exactly the role that is played by the Hamiltonian H (p;, ¢,,),
where pg, ¢, are the canonical momenta and coordinates of a mechanical system
(see e.g., Goldstein, 1959). The solution of this system is obtained by applying the
method of characteristics which yield Hamilton’s canonical equations,

. Jm

= 2.138

o Bl

B, =20 (2.139)
dx g

where " denotes the time derivative along the characteristic curve. The phase
function  is to be obtained by integrating along the characteristic:

W= _[(w— kg x%) dt {summation assumed). (2.140)

Since the Hamiltonian @(k,, x°) has no explicit dependence on ¢ it is a “constant
of the motion”; that is to say, solutions of (2,138) will be such that @(k,, x°) is
constant. Consequently we have

w=@r- _[(Loc, x%) dt (2.141)

The canonical equations constitute the ray tracing equations for surface waves of a
given constant frequency. The equations depend upon frequency, and so the ray
trajectories will depend upon the frequency. Notice that, in general, the wave vec-
tor kg is not necessarily parallel to the ray, although it will be in the case that the
dispersion relation is transversly isotropic. The ray represents the transport of en-
ergy at the group velocity

1

do dw\z
U=|(gey =2 2.142)
(‘{’ ok, akv) :

where g4, is the covariant metric tensor in the surface. In the case of a sphere of
radius a

gn =4, gn=dasin’0, gp=g =0. (2.143)
The usual spherical components of the wave vector are

ko= k/a, ky = cosec Oky/a (2.144)
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and those of the ray tangent v, say, are
Ve=a 6/U; Vy=a sin 6¢/U. (2.145)

As in the ray theory for body waves, it can be shown that there is an inverse rela-
tionship between the square of the wave amplitude and the spreading of neigh-
bouring rays, by virtue of the fact that, in the absence of attenuation, energy is
conserved within the ray tube. This relationship takes the form

Ulw, x4) JO plA(x, r, )[Pdr x (ray tube width) = constant along the ray )
(2.146

and since all other attributes of A(x, 7, £) are determined by the fact that it is a lo-
cal eigenfunction, this equation determines the variation of wave amplitude along
the ray.

While the foregoing theory is general, we shall now specialize to the case that
the dispersion relation is isotropic. The case of azimuthal anisotropy will be dis-
cussed further in other lectures at this school. We write

w = a)(/%, xg) (2.147)
where

1 1
k=(g%kk,)2 = (k5+k3)2. (2.148)

The ray tracing equations can, in this case be recast in terms of the phase velocity,
at constant frequency @ as a function of position: ¢(@, x,) = @w/k. Taking ¢ to be
the independent variable and y= cot 8 to be the dependent variable, the ray tra-
jectory y{¢) satisfies the second order ordinary differential equation (Woodhouse
and Wong, 1986):

d*y 2 (d]/)z ( dy )
Il y=1 sinc B =L 1plde+ =L 1 , 6. ¢). 2.149
d¢2 +y sin p + e+ a0 o] In cl{w, 6, ¢) ( }

Ray tracing equations equivalent to this were derived by Jobert and Jobert (1983).
This is an exact ray tracing equation, but it is particularly useful for investigating
the behaviour of rays in the case of slight heterogeneity, in which case the right
side is a first order quantity, and first order approximations to the ray trajectory
and other ray properties can be easily obtained by substituting the unperturbed
ray trajectory, namely the great circle

¥ () = (const.) x sin{d— ¢,) (2.150)

into the right hand side, and making use of the well known solutions, in terms of
integrals, of the inhomogeneous simple harmonic equation, This can made partic-
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ularly simple if the coordinate system is chosen in such a way that the unper-
turbed ray lies along the “equator”, in which case the equation of the unperturbed
ray is simply y(¢) = 0.

Using this approach Woodhouse and Wong (1986) have derived approximate
formulae for the phase, amplitude and off-azimuth arrival direction. For high or-
bits such linearized results from ray theory are often poor approximations to the
results of exact ray calculations (for realistic low order models of heterogeneity);
however they lend some insight into the magnitude and character of the effect of
heterogeneity on surface waves. In particular, they allow us to write down simple
formulae for the phase and amplitude anomalies to be found in successive orbits
obsetrved at the same station. These can be written in terms of the orbit number #
of odd (R, R; ... Gy, Gs, etc.) and even (R,, Ry ..., G,, Gy, etc.) orbits of surface
waves. For phase anomaly S and amplitude anomaly §1n A these results can be
writien:

ow=— L I:Il-l-l(ﬁ'—l)fz] (# odd) (2.151)
c () 2
oW =— e I:—Il Ea fzfz] (7 even) (2.152)
c(a) 2
dlnA = %cosecA []1 + % (1 — ])]2] (7 odd) (2.153)
6lnA= %cosecA []1 - %ﬁ]z:l (7 even) (2.154)

where I, I, (and similarly J;, J,) are certain integrals taken over the minor are and
great circle path respectively. These integrals are:

I= J S(lnc)do (2.155)

7= [ sin (A= 0)[sin 03~ cos 93,1 5(In ) e (2.156)

assuming that the coordinates are such that the receiver on the “equator” at
(8, ¢) = (x/2, 0) and the receiver is at (#/2, A). Equations (2.153) and (2.154) ne-
glect the effect due to the fact that the surface amplitude of the normalized eigen-
function (7.e. normalized to unit energy surface density) depends upon local struc-
ture. The results (2.151) and (2.152) are simply a representation of Fermat’s prin-
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ciple — that the phase perturbation, to first order in the heterogeneity, is the inte-
gral of the perturbation in phase slowness (8 [1/¢]} with respect to distance trav-
elled along the unperturbed ray. The formulae (2.151) and (2.152) illustrate the
well known fact that, assuming Fermat’s principle to hold, multiply orbiting man-
tle waves accumulate the same phase anomaly for each great circle passage. The
corresponding prediction for amplitude anomalies is that orbits of one sense are
amplified by the same factor for each great circle passage, and that orbits of the
opposite sense are deamplified by the same factor, a phenomenon frequently ob-
served in the data, demonstrating the importance of the focusing effect.

Examples of measured amplitude anomalies, together with exact and lin-
earized (ray theoretic) model calculations are shown in Figures 2,8a,b and 2.9a,b,
taken from Woodhouse and Wong (1986). The ray paths traced using exact ray
theory are also shown, in a projection for which the source is on the “equator” at
zero “longitude” and the great circle path lies along the “equator”. Figure 2.8a,b
shows an example for which the paths are not greatly deviated from the great cir-
cle, and for which the observations and the two theoretical results show some
measure of agreement, Figure 2.9a,b shows an example where the paths deviate by
large amounts (rom the great circle and for which the data are in better agreement
with the exact ray theoretic results, which deviate greatly from linearized ray the-
ory. These results show that there are very large amplitude effects, both observed
and predicted, due to focusing and defocusing of the ray bundle. These signifi-
cantly complicate the problem of estimating the attenuation of mantle waves.

Wong (1989) addressed the nonlinear inverse problem of using both phase
and amplitude of mantle waves to determine phase velocity distributions for Love
and Rayleigh waves in the period range 150-350 s, up to spherical harmonic de-
gree and order 12, This involves iteratively updating the model and the ray paths
until convergence is achieved. While excellent results were obtained for phase
(more than 70% variance reduction for all but the longest periods), the variance
reduction in amplitudes was only of order 20%. This probably indicates that de-
grees higher than 12 have an important influence on amplitudes.

The connection of the results of ray theory, e.g. (2.151)-(2,154), with those de-
rived from the modal approach can be made by recognizing that

66010::;!1 _ U 6¢
@ ¢ 6

(2,157)

This form arises from the fact the 8y, is defined as the local perturbation in
eigenfrequency at constant £ (or constant /), whereas dc¢ is the phase velocity per-
turbation at constant @. Using these relationships (or from first principles) it can
be shown (Woodhouse and Dziewonski, 1984) that the phase perturbations
(2.151), (2.152), at the orbital group arrival times, can be mimicked by a calculat-
ing the contribution to the seismogram as in a spherical model, but with an adjust-
ment € (which is different for different multiplets) to the arc distance, together
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with an adjustment to the modal eigenfrequency 5;;) We find
Sy = ak80— w1 (# 0dd) (2.158)
Oy = —akdb— St (# even) (210G

where ¢ is the group arrival time of the given orbit

tza(h+(n-1Dm/U (1 odd) (2.160)
t=a(-A+nm/U (n even) (2.161)

and where
86 = 2 (5~ 80 (2.162)

e
The quantities 8w, 8w are defined to be the great circle average and the minor arc
average, respectively, of 8wy,.. This provides an alternative derivation of the for-
mula (2.130) of Jordan (1978) for the observed frequency shift for a given path.
Additionally, it gives a simple way of calculating seismograms which incorporate
the elfects of phase delays along incomplete arcs. It has been shown by Romanow-
icz (1987) that this result, together with the amplitude effects predicted by (2.153)
and (2.154) can be obtained by an asymptotic analysis of the scattering approxi-
mation (2.131), when coupling berween neighbouring modes along the same
branch is taken into account. This simplified version of ray theory, which incorpo-
rates only an approximation to the ray theoretic prediction of the phase, is a very
useful one for waveform inversion, and has been applied, in many studies (e.g.,
Woodhouse and Dziewonski, 1984, 1986, 1989; Tanimoto, 1987, 1988, 1990; Su
and Dziewonski, 1991; Su et al., 1994) to both surface wave and long period body
wave data. Its shortcoming is that it is not very accurate for direct body wave
phases, since it predicts that the observed seismogram depends only upon the hor-
izontally averaged structure, which is clearly not a good approximation in many
cases. It is a good approximation (within the limitations of ray theory) for the fun-
damental mode and the low overtones, which constitute a major part of the long
period body wave signal. lts limitations have recently been investigated by Li and
Romanowicz (1994},

In the spectral domain, the measurement of frequency shifts in individual
spectra for the fundamental modes, has been extensively applied to constrain even
degree mantle structure (e.g., Masters et a/., 1982; Smith and Masters, 1989); the
related and traditional technique of measuring phase and group delays over nu-
merous paths was also among the earliest to ellucidate clear patterns of hetero-
geneity in the mantle (e.g., Nakanishi and Anderson, 1982, 1983, 1984; Nataf
et al., 1984, 1986).
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